Towards smarter public transport

Sensing, Modeling and Visualizing Urban Mobility and Copresence Networks

Vassilis Kostakos

16 September 2010, Bogota, Colombia

Motivation

- People increasingly carry mobile communication technologies
- By taking advantage of technology that passengers carry
 - -Better understanding of passenger behaviour
 - -Increase bus seat occupation
 - Optimise network
 - Provide passengers with better information services

Outline

- Describe the enabling technology & algorithms
- Applications
 - -End-to-end passenger counting
 - -Contextual services

Exploiting people's phones to collect mobility data

Main concepts

- Sessions
- Trails
- Encounters

Location 1

Flow of people

Avenida - Recovery

End-to-end passenger detection on busses

Deployment

- Install the equipment onboard a bus
- Integrate with Automated Vehicle Location data

Results

- Identification of entry and exit points for individual devices
- Estimations suggest 10% of population have Bluetooth in discoverable mode
- System was deployed at a single bus for 4 weeks
- Bus covered 4 different routes at different times of day

Contextual services for passengers

Proposed route

 Installation of I2 stations at/nearby public transit bus stops. Deployment at strategic locations

Proposed system

- Deploy equipment to collect data and provide services at bus stops
- Information is routed to the central server
- Provide both historical and (near) real-time perspective

Service triggering

- Services are triggered when a device is detected
- Parameters / filters of a service
 - -What to send (URL? Local file?)
 - -To whom to send? (Specific device, broadcast)
 - -At which location(s)?
 - —At what time/date?

—...

Results

- Many passengers did not successfully receive the test file
 - -We did not advertise the service!
 - -People don't realise that their phone is trying to receive a file
 - Advertisement & increased awareness should resolve this
- New capabilities open up
 - -Reward scheme based on how much time you wait
 - -Personalised O/D matrix, predictions, better info

Summary

- By exploiting passengers' mobile bluetooth-capable phones we can
 - -Collect rich data about travel behaviour
 - -Provide rich, context-aware services
- The collected data are much richer than what current techniques can capture
- The provided services can be fully personalised

The end

• Thank you!

• Questions?

• http://www.m-iti.org

