Pervasive computing

Design and interaction

Vassilis Kostakos

- Principled design of pervasive systems
 - Framework
 - Design tool
 - Additional issues
- Interacting with pervasive systems
 - Gestural interaction
 - Experiment: can we do without GUIs?
- Future research

Design of pervasive systems

What are pervasive systems?

- They pervade the
 - physical,
 - social,
 - cognitive
- environments
 - They affect the way we move, behave and think
- Large scale vs small scale pervasive systems
 - Public vs domestic

A design framework for pervasive information access

Established HCI design foci

- user
- task
- domain

Social considerations

Design for rypublic pervasive systems

- citizen
- sphere 🖊
- space

Citizen

- Traditional "user" focuses on psychological characteristics
 - Large-scale system
 interaction with everyday norms & regulations (user makes no sense?)
- We can say little about the particular user of a large-scale publicly available system, but in respect of citizens we know
 - rights
 - responsibilities
 - membership
- A wide-scale provider of information may be viewed as a public service
 - Public services: characteristics, expectations

Sphere

- Traditional notion of task studies cog aspects
- Pervasive systems: what task?
 - Need to abstract
 - Conceptualise ownership/control
 - Effects of location / technology on task
- Information spheres
 - Public sphere
 - Private sphere
 - Social sphere

- Space: more than GPS
 Architectural/physical space
 Place (i.e. social dimensions)
- Effects of technology, information
- Abstract away those important characteristics
 - Physical space: public, social, private
 - Interaction space: public, social, private

Visual interaction spaces

Auditory interaction spaces

Designing with the framework

- In designing systems for the delivery of information and services, we have a range of artefacts available; e.g. wall displays, PDAs etc
- We use these artefacts to define appropriate interaction spaces
- To know what kind of interaction space to create, we need to take account of the information sphere and the space in which the citizen is currently located

The design process

4

Manipulate interaction spaces (change the technology that is used)
Relocate artefacts (relocate technology)
Re-establish links between information and technology (what information to deliver using which technology).

Using the design tool (Hospital A&E case study)

(For the PhD Candidates...)

- Where did my framework come from?
- Testing out of my framework
 - Post hoc evaluation (can I explain something that exists?) hospital case study
 - A priory design (can I propose something new?) city of Bath case study
- Levels of application
 - Generate proposals (city of Bath)
 - Design exploration and alternatives (hospital)
 - Interaction design

Further design issues

Pervasive computing and architecture

Architecture: Manipulates physical spaces
PerComp: Manipulates interaction spaces

Design of pervasive systems:

Effective integration of physical spaces + interaction spaces
Learning from architecture

Interacting with pervasive systems

"Effective integration of architectural spaces & interaction spaces"

- Interaction spaces can be created by
 - devices (PDA, speakers, screen, etc)
 - the physical aspects of interaction (keyboard, touch screen, etc)
- In PerComp we can make use of varying devices to create appropriate interaction spaces
 - What about interaction itself? How can we control the interaction spaces created by the *act* of interaction?
- Need to *decouple* the interaction from the artefact (abstract away)
 - Stroke-based gestural interaction

What is stroke recognition?

- A stroke is a recorded path of a motion performed by an input device or token
- Identify pre-defined paths
- Execute a command assigned to a particular motion / stroke

The DSR (Directional Stroke Recognition)

- Separate the device from the interaction
- Provides flexibility of stroke input & output devices
 - Can use a mouse, stylus, smart ring, smart card, and any object that can be carried
- Uses bare minimum characteristics of a stroke
 - Only the direction is used
 - Position of strokes, or relative position of many strokes is not used

Examples of Strokes

8 Ringle Strokes

Flexibility of Directional Strokes

Touch-Screen Strokes

-

👪 Untitled - test

File	Edit	View	Help					
		∞ ∘	0	0 0 0	0	0	000 000 000 00 00 00	
Read	y						EE -	- SS - EE - SS - WW //

Camera Tracking

🐺 Form1

Camera Driver								
Driver 0	•							
Start Camera	Stop Camera							
Camera Setting	\$							
Camera Setup	Video Source							
Preview								
What to track Enable Tracking								
H: 49	Width 20							
S: 68	Height 20							
L: 182								
Threshold: 20								
Additional and Deliver 201 000								
Adding to gesture Point (24,99)								

Adding to gesture Point (24,99) Adding to gesture Point (65,97) Adding to gesture Point (120,79) Adding to gesture Point (140,79) WW-EE

FindGesture

Mouse Test - Hold LButton Down

How can the DSR help us?

- Define appropriate interaction spaces
 - run time
 - user decides
 - carried across devices
 - carried across systems
 (? future work)

Experiment: Multimodal Interaction

- Separation between device & interaction
- Can we do without GUIs?
- Effects of presence/absence of visual cues

Further work

- Slow object recognition (different technology?)
- Personalization, mental mapping?
- Multiple object tracking?

Research for the immediate future

CHI '05 Workshop

- "Social implications of ubiquitous computing"
- Social issues affect more than just the design...
- ETH Zurich, Fraunhofer Institute, Bartlett UCL
- Interacting with Computers Special Issue
 - "Social impact of emerging technologies"
 - Trends from traditional to emerging technologies, government involvement
- Space syntax of public pervasive systems (Bartlett)
- Cityware (Bartlett, Imperial, Vodafone, HP, etc.)

Acknowledgements

Many thanks to colleagues and friends

- Eamonn O'Neill, Hilary Johnson, Alan Dix
- Peter Johnson, Peter Wild, Rachid Hourizi, Iya Solodilova, Manasawee Kaenampornpan, Anne Bruseberg, Andy Warr, Dawn Woodgate
- Vlad Coroama, Alan Penn, Irene Lopez de Vallejo, Carsten Magerkurth, Tim Kindberg

The end Thank you

Vassilis

vk@cs.bath.ac.uk