
Chapter 7
A Scalable Sensor Middleware for Social
End-User Programming

Salvador Faria and Vassilis Kostakos

Abstract A substantial amount of research has focused on developing sensor mid-
dleware targeted at various research communities such as networking and context
awareness. This chapter presents SAWA, a sensor middleware based on Sensor An-
drew aimed at social end-user programming. SAWA is designed to collect, present,
share, and act on sensor data. First, it allows novice users to deploy a multitude of
both physical and virtual sensors and actuators (e.g. temperature, light, unread email
count, friend’s status on Facebook, SMS, Tweet) and to aggregate this data in a cen-
tral server. Users are able to access an online portal to visualize and explore their
recorded data. In addition, they can request and share access to other users’ sensor
streams. Finally, they can create actions that are driven by sensor data—both physi-
cal and virtual, and both their own or any of their friends’. In addition to describing
SAWA’s architecture, this chapter presents case studies where this middleware was
used. It is shown that in addition to being robust and scalable, SAWA opens up a
series of new applications by allowing users to program sensors and actuators in a
shared social environment.

7.1 Introduction

Sensors, or transducers, are devices that measure a physical quantity and convert
it into a signal that can be read by an observer or by an instrument [8]. With big
advances in processor technologies and wireless communications, sensor networks
and home automation systems have been growing in recent years [5]. In these sys-
tems, many sensors distributed in an area collect various physical data such as tem-
perature, humidity, motion, and light [4].

S. Faria (�)
Madeira Interactive Technologies Institute, University of Madeira, Madeira, Portugal
e-mail: salvador.faria@m-iti.org

V. Kostakos
Department of Computer Science and Engineering, University of Oulu, Oulu, Finland
e-mail: vassilis@ee.oulu.fi

T. Lovett, E. O’Neill (eds.), Mobile Context Awareness,
DOI 10.1007/978-0-85729-625-2_7, © Springer-Verlag London Limited 2012

115

mailto:salvador.faria@m-iti.org
mailto:vassilis@ee.oulu.fi
http://dx.doi.org/10.1007/978-0-85729-625-2_7


116 S. Faria and V. Kostakos

Researchers have previously developed many sensor-networking applications
and middleware, but they are typically isolated, small-scale and short-lived experi-
ments [10]. This highlights the necessity for interconnecting various sensors, both
physical and virtual, in a scalable manner and using open protocols and technology.

This need is further exaggerated because with digital technology information
available anywhere and anytime about the physical world has a potential value, and
with sensor networks deployed across the globe by various organization, govern-
ments, scientist and general public, it becomes clear that data sharing is an impor-
tant step to get more value [2]. With increasing penetration of embedded sensors
in networked devices, such as GPS sensor in mobile phones, it is now possible to
create applications that take into account the current state of the real world [3]. This
kind of information may be useful to be shared in community places, such as social
networks, where users may share their personal state with their friends.

Furthermore, collected data from sensors is normally difficulty to interpret, and
combined with the fact that the specialists who interpret the data are usually not ex-
perts in computers, they need an easy tool to use to manage the collection of data [2].
Therefore, the sensing platform should help scientists to leverage computational
power to simulate, visualize, manipulate, predict and gain intuition about monitored
phenomenon [6]. Visual representation of data can be done in many ways, the most
common are evolution charts. Evolution charts are charts that represent one measure
over an evolving dimension, time for instance. These types of charts are useful to
compare new data with previous data, as well with different periods of time.

Our intention is to build a system to facilitate the use and sharing of sensor data
by providing a set of functionalities and a uniform access to these devices. The sys-
tem allows users to network any sensing device by “registering” sensors and actua-
tors, enables users to monitor their devices and define who has access to the recorded
information; present data to users in form of charts thus giving a better interpreta-
tion and meaning to data; longitudinally record sensor data enabling monitoring;
and allow for user policies to define sensor conditions and respective actions.

7.2 Related Work

There are different methods for retrieving data from sensors, continuous, event-
oriented, query-oriented and hybrid. The method to use depends on network design
and resources constraints, like power and limited communication. In continuous
methods, the sensor data is sent continuously at predefined rate (e.g. temperature
every hour). In event-oriented mode, the sensor data is sent when an event of in-
terest occurs (e.g. presence in room). In query-oriented model, applications are re-
sponsible for defining witch events are of interest and then querying sensors (e.g
“SELECT sensors WHERE temperature > 40 AND C02 > 15”). Finally the hybrid
method is when more than one of the other three methods are used [9].

Online sensor-sharing services like Pachube and SensorPedia have the objective
of applying the social networking principles to sensor data. Pachube is an innovative



7 A Scalable Sensor Middleware for Social End-User Programming 117

web service, which enables users to share and discover real time sensor data from
objects, devices and spaces around the world. A user can easily register a sensor
feed and start uploading sensor data. Recently Patchube started to offer triggers,
allowing users to have URL event notification and experimental SMS notifications.
The Pachube web service has the major advantages of an easy to use interface, a big
community and a set of third party applications. A drawback is that Pachube relies
on Representational State Transfer (REST) paradigm and not on a real-time transfer
paradigm, limited support for actuators and basic triggers.

Our system is similar to Pachube, in the way it has similar objectives, allowing
users to easily share sensor data and visualize them. Besides the these objectives,
our system allows a high scalability, extensibility, security and privacy in the mid-
dleware. Our system allows multiple entities to subscribe to sensor data in a push
method, define user access type and groups, encryption and other relevant XMPP
Pub-Sub features. It also provides a web interface, where it is possible to manage
sensors networks and devices, allowing users to add any sensor and actuator device
with images and related information. From the web interface of our application it
is possible to directly call commands in the actuators and create advanced policies,
which can use different types of rules and actions.

7.2.1 Sensor Andrew

Sensor Andrew is a scalable campus-wide sensor middleware, developed with the
objectives of supporting ubiquitous large-scale monitoring and infrastructure con-
trol [10]. It was developed by Carnegie Mellon University in order to integrate mul-
tiple systems, and designed to be extensible, easy to use, and secure while main-
taining privacy. Its reliance on XMPP allows application developers to be able to
transmit sensor data with no need to re-invent lower-level interfaces.

Sensor Andrew’s objectives made it ideal for our needs:

• Ubiquitous large-scale monitoring and control: support for sensing and actuation.
• Ease of management, configuration and use: easy to use, manage and develop

applications.
• Scalability and extensibility: support for any device, and support extensions
• Built-In security and privacy: support for security and privacy, encryption, key

management, access control and user management.
• Infrastructure sharing: allow application to reuse of infrastructure devices.
• Evolvability: support for different computational paradigms and support changes.
• Robustness: built-in robustness and able to reconfigure itself.

A drawback of Sensor Andrew, however, is that it remains an expert tool, with
no visual interface and all configurations taking place via scripts and options files
in the command prompt. Therefore, a substantial amount of our work focused on
adding an interface and visualization component to Sensor Andrew.



118 S. Faria and V. Kostakos

7.2.2 XMPP

The Extensible Messaging and Presence Protocol is an open protocol based on Ex-
tensible Markup Language (XML), designed for real time communications, being
the XML the base format for exchanging information. With XMPP protocol it is
possible to support a vast quantity of services, such as, channel encryption, au-
thentication, presence, contact lists, one-to-one messaging, multi-party messaging,
service discovery, notifications, structured data forms, workflow management and
peer-to-peer media sessions [1].

XMPP is used by many types of applications, instant messaging, multi-party
chat, voice and video calls, collaborations, lightweight middleware and content dis-
semination [7], also expanded to the domain of message-oriented middleware. Built
to be extendible, the protocol has been extended with many features, including the
Publisher-Subscriber paradigm. According to [11], by 2003 it was estimated that
software using XMPP was installed in hundreds of server across the Internet and
was used by ten millions of people. Most notably, services like Google chat and
Facebook chat rely on this technology.

XMPP has more than 150 published extensions, including the publisher sub-
scriber extension (XEP-060). The Pub-Sub extension defines a generic protocol,
enabling any application to implement the most basic Pub-Sub features.

7.3 System Overview

Our system makes it possible for users to network physical and virtual sensors, and
create policies to act upon the values of the sensors. For instance, it is possible
to create a policy to alert a person via SMS when a particular value, e.g. of gas
concentration, is detected. The system has potential for real-time uses, for non real-
time, and it can be used also as data recording tool. A good example is monitoring
energy consumption. It is possible to monitor many situations, like average time and
frequency of use of television, computers, and lights turned on without any person
present in the home.

Furthermore, using GPS technology it is possible to create policies to detect when
a device enters or exits a geographical area. Considering a bus updating its GPS
position every minute, a policy can be created to trigger a notification when a bus
is detected in special area such as a bus stop. Given the built-in sharing capabilities
of the system, the owner of the “bus sensor” (conceivably the bus operator) could
choose to share the sensor readings with any member of the public. Subsequently,
interested users could construct their own notification based on the bus position, as
they see fit.

Finally, the system can be used to optimize energy consumption and to execute
common human actions. It is possible to detect a person in a room and the system
can turn automatically the lights on if the luminosity is sufficient (e.g. during day).
And turn off the same lights when presence is not detected. Thus avoiding users to
repeat continuously the same everyday actions as well can reduce energy consump-
tions.



7 A Scalable Sensor Middleware for Social End-User Programming 119

7.3.1 User Interface

Our system provides user with instructions on how to network and connect their
sensors to our infrastructure. This is possible in a number of ways, both using XMPP
and HTTP GET. Here we do not describe this part of the process, but rather focus
on the web front of our application.

The main interface (Fig. 7.1) consists of a menu, similar to a tree, starting from
generic root options, and then subdividing into multiple sections. This menu allows
us to expand the platform features without having to substantially change the menu
or interface layout. From the first page the user is able to graphically browse her
sensor networks and sensor networks that she has been granted access to. Sensor
networks are groups of sensors, usually functioning as a group. Sensor networks are
presented in the form of a mashup using Google maps. It is worth noting that sensor
networks contain multiple sensors, and an individual sensor may contain multiple
“variables” as in the case of an accelerometer that contains 3 variables for X,Y

and Z.
The user is also able to create a list of sensor networks they have access to, as

shown in Fig. 7.2. Here, each sensor network has an ID, a name and address, a num-
ber of associated sensors, a control model (open allow access to anyone, whitelist
gives access to authorized users), and an owner.

Each sensor network can be probed for further information. In this case, a variety
of details are shown about the network, including possible screenshots uploaded by
other users (see Fig. 7.3), a detailed list of the sensors in this network, as well as the
type of each sensor and its current recording state.

More information for each sensor can be shown on a separate page (see Fig. 7.4).
This detailed contains the basic sensor information, an image gallery and the sensor
variables list. Certain sensors, such as an accelerometer, may have multiple “vari-
ables”: in the case of the accelerometer these are X,Y , and Z. In other cases, such
as in the figure below, it is convenient to create aggregations of sensors, such as
a “refrigerator sensor”. In this case, we show a “sensor” that has a series of value
relating to temperature, door status, gas levels, and whether any human is nearby.

In addition to sensors, sensor networks may also contain actuators. These are
treated in a very similar way as sensors, except from the fact that they cannot record
information and they have functions that can be called. Each actuator has a detailed
page where all its attributes and functions are shown (see Fig. 7.5). In addition,
the functions can be directly called for purposes of testing and daily usage. New
functions can be added to actuators, but these functions are symbolic and must by
interpreted appropriately by the actuator hardware. This most likely requires con-
sultation of the hardware instructions and the device’s specifications.

Given a set of sensors and actuators, a user can specify a policy (see Fig. 7.6).
Policies consist of sensor values (it is noted that these sensors may not be owned by
the owner herself but may be shared or public), actions, and a notification interval.
The notification interval is the least amount of between subsequent executions of the
actions. This feature avoids the continuous notifications when a policy is constantly
matched, i.e. we do not want to receive an SMS notification every second. A policy



120 S. Faria and V. Kostakos

Fig. 7.1 Main Interface, showing an overview of available sensor networks (top), a summary of a
particular network’s structure (middle), and details about particular sensors (bottom)



7 A Scalable Sensor Middleware for Social End-User Programming 121

Fig. 7.2 Detail view of sensor networks

Fig. 7.3 Detailed view of a particular sensor network. This includes a list of all the sensors in the
network along with their current state

can have multiple rules which describe conditions under which policies should be
fired. When a policy is fired, the actions are executed.

In Fig. 7.6 we created a policy named “gas_alert”, the selected notification type
is SMS, in the message field, and we use tags ({value}), to be replaced in the actual
SMS. This policy contains only one rule, the defined rule uses gas_value variable,
the operator ‘>’ and the match value 100. The effect of this policy is to alert via
SMS when there is a gas leak (gas_value > 100).

It is noted that rules may also use dates and times, while for variables of type
string the operators “is”, “is not”, “starts with”, “ends with”, “contains” and “does



122 S. Faria and V. Kostakos

Fig. 7.4 The page showing detailed information about a particular sensor. In this case, the sensor
has multiple variables

not contain” can be used. In addition, SQL-Like rules may specify date intervals
during which a particular value may exist or not.

Finally, users may choose to enable recording on a particular sensor, and sub-
sequently visualize the collected data (see Fig. 7.7). Multiple chart types are sup-
ported, and multiple variables can be combined in a single chart. The time span of
their chart, as well as their granularity, can be dynamically changed.

7.3.2 High Level Architecture

The system consists of a number of components (see Fig. 7.8):

• Web application—The component responsible for presenting all information to
users, and enabling users to manage their devices, associated options, and sharing
preferences.

• Datarecorder—The service responsible for storing sensor data.
• Actionchecker—The service responsible for matching sensor input to existing

policies, and trigger actions when a policy matches.
• Scheduler—The service responsible for handling new recording requests and new

policies, and coordinating the datarecorder and actionchecker services.

Our system can be divided in two parts: (i) the middleware, composed by the
XMPP server with publisher-subscriber support, which is responsible for transport-



7 A Scalable Sensor Middleware for Social End-User Programming 123

Fig. 7.5 Top: Detailed information for a particular actuator. In this case the actuator is an LED.
In addition to details about the actuator, its functions are also shown and they can be called. Fur-
thermore, new functions can be added. Bottom: adding a new actuator allows for the definition
of functions. These functions are symbolic, and must be interpreted appropriately by the actuator
hardware

ing and handling all sensor data, and (ii) the other part which consists of the web
application and services.

The architecture style of our system is a passive shared repository, allowing for
a loose coupling between system components. All interactions are made through
the database, allowing a greater facility in modifying system components without
affecting other components. The web application interacts with the middleware us-
ing a dedicated XMPP client, but most of the work done by the web application
is stored in repository. As the figure shows, the services also use the repository to
modify, read and create new entries. The datarecorder and actionchecker services
connect to the XMPP server and the repository; these services listen for published
data in Pub-Sub nodes and then process the sensor data according to user definitions
in repository.

Finally, the system allows HTTP POST requests to be used to update sensor
values. This is a very flexible way of accepting sensor values, and makes it easier



124 S. Faria and V. Kostakos

Fig. 7.6 A policy to alert via SMS when there is a gas leak (gas_value > 100)

Fig. 7.7 Dynamically generated charts allow users to visualize historic data for recorded sensors

for our system to work with embedded systems that may be incapable of generating
XMPP messages. In this case, an HTTP wrapper is used to accept values for a
particular sensor: the sensor id, the value, and a pre-shared secret. The wrapper then
interprets this input, identifies from which sensor it is generated, and generates an
internal XMPP message to update the sensor value. This solution ensures that sensor
values can be updated easily, while at the same time the authorization and security
model of XMPP is maintained.



7 A Scalable Sensor Middleware for Social End-User Programming 125

Fig. 7.8 High-level architecture

7.3.3 Plugins

The advantages of using plug-ins are well known, they are easy to deploy, they are
efficient, and they increase the extensibility of applications. To achieve this func-
tionality, we used GModule functions, which provide a portable way to dynamically
load object files. The system provides a number of plugins that can be triggered as
part of policies.

Email. Email is a communication method and is used in almost every notification
system. The plugin allows static and dynamic text to be generated and sent to a
recipient.

URL. Efficient notifications can take the form of URL calling, a simple and ba-
sic notification that can be very useful in communicating between two unknown
systems. This plugin relies on the HTTP GET method to call a pre-defined URL
with or without parameters. One way in which this plugin can help bring together
diverse systems is, for example, by calling a foreign systems’ API by accessing a
REST API: http://example.com/lights/set/33/off.

Functions. This plug-in enables the publication of events using XMPP nodes. In
particular, it allows the publication of commands to actuators, such as “activate”,
“turn_off”, “increase”, or any pre-defined command. In sensor gateways, when a
message is received, the gateway parses the XML message to get the command or
function, and can easily identify if the function contain arguments. After that, the
sensor gateway is responsible for calling the local actuator with the right commu-

http://example.com/lights/set/33/off


126 S. Faria and V. Kostakos

nication protocol. Optionally the sensor gateway may report the new status of the
actuator, such as “running” or “active”.

SMS. The plugin allows the transmission of arbitrary static and dynamic text to a
mobile device capable of receiving SMSs. With the spread of mobile communica-
tions, SMS is a good mechanism to alert people with urgency, and to send sensor
data from remote areas.

Twitter. Twitter is a social networking and micro blogging service that enables its
users to send and read messages known as tweets (Wikimedia Foundation 2010).
We created a plug-in for sending posts to this social network. Following the official
tutorial we developed the twitter plug-in that uses HTTP GET to create a new
twitter post.

7.4 Case Studies

7.4.1 iMailbox

The motivation for this use case was to build a system that notifies the user via SMS
whenever new physical mail arrives in the post box. To implement this idea we used
an Arduino board with a door sensor. The physical sensors detect the status of the
door (open, closed), and also detects when a mail is added to the mailbox.

To detect when a mailbox door is opened, a cheap magnetic door switch was
used. This sensor consists of two parts, the magnet and the magnet detector. The
magnet was attached to the rotating lock mechanism and the magnetic sensor was
glued to mail box, as shown in Fig. 7.9. To detect the presence of mail we used a
sensor that acts like a button: when new mail is inserted the metal plates touch and
close the circuit.

In the installation, we used an external power supply unit, but a battery or a solar
panel can be used. The mail sensor was attached to the box, a few centimeters above
mailbox slit. In tests using physical envelopes the sensor detected the insertion of
all mail.

Once the hardware was configured, we were able to use our online platform to
achieve the desired notification behavior. In the web application we registered a
“mail sensor”, and we registered two variables for it: new_mail (set to 1 when new
mail is present) and door_status (set to 1 when the door is opened).

Using the appropriate network, sensor and variable IDs, our Arduino board trans-
mitted values using HTTP POST to a server using a simple protocol as follows:
message_number#sensor_id#variable_id#variable_value. The server re-broadcasts
the received information using XMPP to our system.

Next, a policy was created such that whenever the variable new_mail becomes
“1” an SMS action is triggered with the message “New mail arrived!”. In addition, a
notification was created such that whenever the mailbox door was opened a further
SMS notification was sent (see Fig. 7.10).



7 A Scalable Sensor Middleware for Social End-User Programming 127

Fig. 7.9 Top left: Magnetic door sensor. Top right: metal plates for detecting mail. Bottom left:
metal plates installed in the mailbox. Bottom right: final installation

7.4.2 iRefrigerator

The motivation to monitor a refrigerator was to assess the impact of opening the
door on energy consumption. To accomplish this, we used a temperature sensor, a
photo resistor sensor, a gas sensor to detect butane gas leaks, and a presence sensor
to monitor people’s presence in the kitchen (see Fig. 7.11).

Every refrigerator has a light which is turned on when the door opens, and is
turned off when the door is closed. To detect when the door was open, a photo
resistor was used. When the door is closed (no light present) the sensor will report
“0” and when the light intensity is more than zero, means the door is open. Along
with the light intensity sensor a thermoresitor was attached to measure temperature.
The gas sensor, which is highly sensitive to gases, was used to monitor the presence
of butane and propane gas in the kitchen. Finally, a Buzzer that emits a sound alert
when the gas sensor detects high values was installed. Similar to the iMailbox, we
used an Arduino board platform, a RF transmitter module, and the same protocol
and procedure for sending sensor values.

The chart in Fig. 7.12 represents the data from four variables within one hour
(10 h). The darkest brown line is the refrigerator temperature, the light brown rep-
resents the gas sensor data, and the line with magenta color represents humans’
presence in that hour. The blue line shows the duration for which the refrigerator



128 S. Faria and V. Kostakos

Fig. 7.10 Policy information for the iMailbox case study (inset: a received SMS as a result of new
physical mail arriving in the mailbox)

Fig. 7.11 iRefrigerator sensors

door was opened, and it is noted that this line only contains 7 data points (ideally
is should be rendered as a bar chart, but combining multiple chart types is not tech-
nically possible at this point). In addition, a Twitter update was generated once per
hour to announce the iRefrigerator’s temperature.



7 A Scalable Sensor Middleware for Social End-User Programming 129

Fig. 7.12 Top: one-hour data recorded by the iRefrigerator (x-axis: time, y-axis: value). Middle:
high granularity data for the refrigerator temperature (y-axis) over time (x-axis). Bottom: an auto-
mated twitter post every hour indicated the iRefrigerator’s temperature

7.5 Discussion and Conclusion

This chapter has presented a sensor middleware that allows users to network, record
and share sensor data. The chapter has described the system itself, and has presented
two case studies where the middleware was used. Both the iMailbox and iRefrigera-
tor case studies exemplify the technical capabilities of our system, however we wish
to point out the fact that they also exemplify the potential of the system’s sharing
capabilities.



130 S. Faria and V. Kostakos

The key aspect is of our system is the ability for users to share the sensors they
own with other users, and the ability for users to create rules and actions based on
sensors that they do not actually own. For instance, in the case of the iRefrigeratore,
one member of the family could technically own the “refrigerator sensor”, but could
choose to share that sensor with other members of the family. The rest of the family
could make use of this sensor in different ways. One person may be interested in
charting the use of the kitchen area during the day, while another person may want
to receive an alert if the door has been opened for more than 300 seconds.

Similarly, in the case of the iMailbox, the owner may wish to share the sensor
with her secretary such that she could pick up the mail whenever it arrives, and also
share it with security such that they can monitor whether the door is opened outside
working hours (indicating potential theft). In this case, the security themselves could
decide for the most appropriate automated action rather than for the user creating an
email or SMS alert intended for security. For instance, security personnel may have
a physical buzzer in their control room which they can actuate should the iMailbox’s
door be opened in the middle of the night—this is something that neither the user
nor security can do on their own but is made possible by sharing access to sensors.

Another advantage of the system is that it is flexible enough to allow for virtual
sensors to be utilized. Such virtual sensors may include calendar information, sys-
tem information such as file space, unread emails, and so on. A particularly interest-
ing type of sensor is GPS: we are currently working on a prototype system whereby
a mobile phone constantly reports its GPS location as a “location-sensor”. The user
is then able to create arbitrary rules online triggered by the phone’s location. In ad-
dition, the user may choose to share this sensor data with others. This would allow,
for example, for parents to be notified whenever their child leaves work, whenever
the husband is near a supermarket, or whenever two people are within certain dis-
tance of each other. In combination with the ability to post live updates on Twitter,
the system provides a wide array of possibilities in terms of location sharing.

Acknowledgements This work is funded by the Portuguese Foundation for Science and Tech-
nology (FCT) grants CMU-PT/HuMach/0004/2008 (SINAIS) and CMU-PT/SE/0028/2008 (Web
Security and Privacy).

References

1. Barrett, K. May 2009. http://fyi.oreilly.com/2009/05/what-can-you-do-with-xmpp.html.
2. Dickerson, R. F., et al. (2008). MetroNet: case study for collaborative data sharing on the world

wide web. In 2008 international conference on information processing in sensor networks
(IPSN 2008) (pp. 557–558).

3. Elahi, B. M., Romer, K., Ostermaier, B., Fahrmair, M., & Kellerer W. (2009). Sensor ranking:
A primitive for efficient content-based sensor search. In Proceedings of the 2009 international
conference on information processing in sensor networks, Washington (pp. 217–228).

4. Fletcher, B. (2006). XMPP & cross domain collaborative information environment. Power-
Point Slides. August 2006.

5. Newburry, N. (2008). http://www.frost.com/prod/servlet/market-insight-top.pag?docid=
118964127. 22 January 2008.

http://fyi.oreilly.com/2009/05/what-can-you-do-with-xmpp.html
http://www.frost.com/prod/servlet/market-insight-top.pag?docid=118964127
http://www.frost.com/prod/servlet/market-insight-top.pag?docid=118964127


7 A Scalable Sensor Middleware for Social End-User Programming 131

6. Hammoudeh, M., Newman, R., Mount, S., & Dennett C. (2009). A combined inductive and
deductive sense data extraction and visualisation service. In Proceedings of the 2009 interna-
tional conference on pervasive services, London (pp. 159–168).

7. http://xmpp.org/about-xmpp/. January 2010.
8. Kenniche, H., & Ravelomananana, V. (2010). Random geometric graphs as model of wireless

sensor networks. In The 2nd international conference on computer and automation engineer-
ing (ICCAE), 6 February 2010 (pp. 103–107).

9. Ribeiro, A., Silva, F., Freitas, L., Costa, J., & Frances, C. (2005). SensorBus: a middleware
model for wireless sensor networks. In Proceedings of the 3rd international IFIP/ACM Latin
American conference on networking, Cali, Columbia (pp. 1–9).

10. Rowe, A., et al. (2008). Sensor Andrew: Large-scale campus-wide (Technical Report).
Carnegie Mellon University, Pittsburgh.

11. XMPP Software Foundation. http://xmpp.org/xsf/press/2003-09-22.shtml. September 2003.

http://xmpp.org/about-xmpp/
http://xmpp.org/xsf/press/2003-09-22.shtml

	Chapter 7: A Scalable Sensor Middleware for Social End-User Programming
	7.1 Introduction
	7.2 Related Work
	7.2.1 Sensor Andrew
	7.2.2 XMPP

	7.3 System Overview
	7.3.1 User Interface
	7.3.2 High Level Architecture
	7.3.3 Plugins

	7.4 Case Studies
	7.4.1 iMailbox
	7.4.2 iRefrigerator

	7.5 Discussion and Conclusion
	References


