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a b s t r a c t

We introduce the idea of temporal graphs, a representation that encodes temporal data
into graphs while fully retaining the temporal information of the original data. This
representation lets us explore the dynamic temporal properties of data by using existing
graph algorithms (such as shortest-path), with no need for data-driven simulations. We
also present a number of metrics that can be used to study and explore temporal graphs.
Finally, we use temporal graphs to analyse real-world data and present the results of our
analysis.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Graphs and complex networks have been used to studymany complex human and natural phenomena e.g. Refs. [1–4,34].
Typically, graph structures are used to represent relationships between entities such as individuals or organisations. While
these relationships are mostly instantiated intermittently over time, previous research has used network representations
that aggregate the relationships at discrete intervals e.g. Refs. [5,6]. Hence we refer to such graphs as ‘‘static’’ graphs.
Aggregating data to derive snapshots at distinct intervals makes data analysis tractable, but this approach is also

historically motivated by the fact that rich temporal information was not traditionally available for analysis. To overcome
this lack of rich temporal data, Granovetter and Schellingwere among the first to propose a simulation approach to studying
dynamic processes such as diffusion on static graph structures [7,8]. Given a static structure, they effectively proposed a
linear thresholdmodelwhere, at each simulated time-step, each node becomes ‘‘active’’ if a certain fraction of its neighbours
is already active. This approach helps us overcome a possible lack of rich temporal data, and has become widely popular in
subsequent research [9,10,5,11,12].
Time-dependent interactions within networks of components have been extensively considered in the domain of

communication networks and queuing theory e.g. Ref. [13]. Typically, the models used to analyse such engineered systems
make a number of assumptions such as considering infinite numbers of users or customers, queue capacity, or no bounds on
inter-arrival or service times. Computer simulations and analysis of experimental data is an alternative approach to provide
insight into problems which do not fall under the mathematical scope of queueing theory. This is the case when analysing
loosely-defined, non-engineered systems of interacting actors, such as a community of communicating users considered in
this paper
Recent work has addressed event-driven cascading communication [14–18], but such work considers quite different

issues from our focus here. In addition, graphs annotated with the times at which the nodes communicated have been
theoretically studied [19–21], but without considering real-world datasets. Holme has extended such work by analysing
email datasets [22], though in the context of viruses and epidemics. Similarly, Research in the domain of distributed
computing focusing on epidemic algorithms has considered designing communication patterns that spread information
quickly [23].
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The main limitations of previous work is that they either consider well-designed systems of interacting components,
weak real-world data, or analyse data within a specific narrow domain. Not until recently have digital and communication
technologies enabled us to capture on an unprecedented scale data about many aspects of human behaviour, such that its
temporal richness is adequately preserved. For instance, researchers have captured and analysed extensive longitudinal
data on people’s use of the phone [24], people’s mobility around a city [25,26] or a campus site [27,28], and longitudinal
interactions between group members [29,30]. The availability of such data has enabled researchers to employ emulations,
as opposed to simulations, for studying diffusion and propagation in complex and social networks [31–33].

1.1. Emulations

Emulation-based analysis is a data driven approach for understanding dynamic behaviour. For instance, consider a
dataset consisting of the emails that a group of people exchange over time. Using this dataset we can represent each person
as an agent, and then run through the following process: for each event (in this case an email exchange) decide whether one
agent ‘‘infects’’ the other. By adjusting the various diffusion parameters and observing the effect we gain insights on how
this group of people may share information over time, or how viruses may spread through a community.
One of themain advantages of using emulations is that its results are arguablymore realistic than an arbitrary simulation.

Obviously this realism depends on the quality and quantity of data. Additionally, emulations are a good tool for exploring
the effect of real-world alternative scenarios (e.g. what will happen if the email server goes offline for 2 days?).
However, the use of emulations has its drawbacks. Most notably, emulations sacrifice the key benefit of static graph

analysis: deriving concrete yet universalmetrics for each node or unit of interest. Thismeans thatwe can no longer apply our
understanding of well-studied graphmetrics. Furthermore, emulation analyses are more ‘‘messy’’ and harder to extrapolate
from, precisely because they are data driven. It is much more difficult to clearly and accurately externalise an emulation
dataset as opposed to a graph structure.
These difficulties make it hard to compare across emulation datasets and application domains. To overcome these

difficulties, a possible compromise is to use the approach of graph snapshots at distinct intervals e.g. Refs. [5,6]. This,
however, will sacrifice most of the rich temporal information in the dataset.

1.2. Contribution

In this paper, we describe temporal graphs, a tool for analysing rich temporal datasets that describe events over periods
of time. Temporal graphs have the analytical benefits of static graph analysis while at the same time retain all temporal
information that may be available to us. Additionally, we define a number of metrics for temporal graphs, namely temporal
proximity, geodesic proximity, and temporal availability, all of which help us quantify the relationship between nodes over
time, and the role of each node in the temporal context of the entire network. As we show here, this approach is useful for
analysing loosely-defined systems of interacting components, such as communities of users.
In the next section, we introduce the idea of temporal graphs by demonstrating their construction with a small sample

dataset. We explore the same dataset using two different sets of assumptions: first we assume that our data was generated
using technology that allows for one-way communication (e.g. email), and then we follow the same process for two-way
communications (e.g. telephone).
Finally, we use temporal graphs to analyse real world datasets of social interactions. We find that our temporal metrics

are distinct from static graphmetrics and uniquely quantify people’s relationship over time. Additionally, we show how our
metrics allow us to quickly identify key nodes in dynamic processes.

2. Temporal graphs

Let us assume a dataset describing events that take place at distinct points in time. We also assume that each distinct
event does not have a temporal duration. For instance, consider a dataset consisting of the email exchanges between a
group of users. Each email exchange takes place at a specific moment, and additionally each exchange is instantaneous.
Furthermore, this is a one-way communication channel, with information flowing unidirectionaly from the sender to the
recipient. For example, in Table 1 we show such a sample dataset consisting of email exchanges between 5 people over a
period of 21 days. For each email we know the sender, recipient(s) and the day on which the email was sent.
At this stage, our use of days as a unit of measurement is arbitrary, as hours or seconds can equally be used for the same

purpose. What is important to note is that we assume each email transaction has no duration in itself.

2.1. Static representation

If we ignore all temporal information from Table 1, we can construct a graph to represent the aggregated relationships
between the five people. We proceed by creating one node per person, and linking nodes that had an email exchange. The
direction of links is the same as the direction of the respective email message. The resulting social network is shown in Fig. 1.
The graph in Fig. 1 enables us to calculate a number of distinct metrics for each node as well as for the graph as a whole.

For instance, we may consider each node’s centrality (degree, closeness, betweenness) as a mechanism for interpreting our
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Table 1
The email dataset: list of emails exchanged between people at distinct points in time (days).

Sender Recipient Time

A B t1 = 0
A C, E t2 = 1
E D t3 = 3
B C t4 = 5
B D t5 = 9
D B t6 = 14
A D t7 = 20

Fig. 1. A static graph representation of Table 1, which retains no temporal information. Each node represents a person, while edges link people who had
email exchanges (in the direction of communication).

data. However, we point out that this representation has already sacrificed all temporal information that was available in
Table 1, such as the frequency of events and the time difference between subsequent events. As far as Fig. 1 is concerned, all
links are simultaneously and continuously available.

2.2. Temporal graphs and metrics

To retain the temporal information of Table 1 in a graph we construct a temporal graph in three steps:

(1) Create one node per person per point in time. Hence person A is represented by the set of instances {At1, At2, At7}.
(2) For each set of instances we link consecutive pairs {Atx, Atx+1} with directed edges of weight tx+1- tx, representing the
temporal distance between the pair. For example, the weight between nodes At2 and At7 is 19 days (20− 1).

(3) We use unweighted directed edges to link node instances that participated in a email transaction. An email from A to B
at time tx is instantiated as a directed link between Atx and Btx.

Hence, each node in Fig. 1 now becomes a directed chain of nodes that represent all temporal instances of the node over
time. Following these conventions, we produce the temporal graph in Fig. 2.
The temporal graph in Fig. 2 has much richer information about the events described in Table 1, as well as the flow of

information that these events enable. For readability, all weighted links are dashed, while solid links have no associated
weight.
We can already observe some insights that temporal graphs offer. For example, in Fig. 1 there is a path from D to C via

B (DBC). This is quite misleading however, as in Fig. 2 we see that no such path exists. To be precise, there is no path from
any instance of D to any instance of C. This discrepancy between Figs. 1 and 2 arises because the interaction between D and
B (e.g. Dt6–Bt6) takes place after B interacts with C (Bt4–Ct4), hence D cannot reach C at all. Similarly we observe that many
paths in Fig. 1 are not available in Fig. 2, such as paths DBC, EDBC, and ADB.

2.2.1. Temporal proximity
We observe that in Fig. 1, person A has three paths to D: AD, ABD, AED. While AD is the shortest in Fig. 1, this is not

necessarily the case in Fig. 2. To demonstrate this, first we need to define a metric of distance for temporal graphs. Since
Fig. 2 has no single node for person A or D, but rather has the sets {At1, At2, At3, At7} and {Dt3, Dt5, Dt6, Dt7} respectively, we
need to define a measure of distance between these two sets.
We call our metric of distance temporal proximity between X and Y , defined as

p(X, Y , ta, tb)

where ta is a temporal pre-condition for X and tbis a temporal post-condition for Y . The values ta and tb can either take a
specific value or be empty (null). This gives rise to at least four possible ways of calculating temporal proximity, all of which
can be calculated using any weighted shortest-path algorithm. For instance, to measure the temporal proximity between A
and D, we may choose to calculate:
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Table 2
P, Pin and Pout for people using email. Unit is days.

P Pout
A B C D E

A 0 6.5 0.5 1.67 0.5 2.29
B – 0 2.5 4.33 – 3.42
C – – 0 – – –
D – 5.33 – 0 – 5.33
E – 12 – 1 0 6.5
Pin – 7.94 1.5 2.33 0.5

• p(A,D, ti, tj): the shortest path between some instance of A, e.g. At2, and some instance of D, e.g. Dt7. This example is
equivalent to p(A, D, t2, t7) and intuitively means ‘‘Given t2, find the shortest path from A to D such that D is reached at
t7’’. In this case, the shortest path has weight w(At2,At7,Dt7) = 19, which translates back to AD.
• p(A, D, ti, null): the shortest path between some instance of A, e.g. At1, and any instance of D ({Dt3, Dt5, Dt6, Dt7}). This
example is equivalent to p(A, D, t1, null), and intuitively means ‘‘Given time t1, find the shortest path from A to D’’. In this
case, the shortest path is AED with total weight w(At1,At2, Et2, Et3,Dt3) = 1+ 0+ 2+ 0 = 3.
• p(A, D, null, ti): the shortest path between any instance of A ({At1, At2, At3, At7}) and some instance of D, e.g. Dt5. This
example is equivalent to p(A, D, null, t5) and intuitively means ‘‘Find the shortest path from A to D such that D is reached
at t5’’. In this case, there are two shortest paths with weight w(At1At2Et2Et3Dt3Dt5) = w(At1Bt1Bt4Bt5Dt5) = 9, which
translate back to AED and ABD respectively.
• p(A, D, null, null): the shortest path between any instance of A ({At1, At2, At3, At7}) and any instance of D ({Dt3, Dt5, Dt6,
Dt7}). This intuitively means ‘‘find the shortest possible path from A to D throughout the entire dataset’’. In this case, the
shortest path is w(At7,Dt7) = 0, which translates back to AD.

Our notion of temporal proximity p inevitably must take into account time. While for a static graph we can simply
calculate the geodesic distance between two nodes in terms of hops, in a temporal graph we need to effectively set the
time limits within which this path is to be instantiated, hence the need for temporal pre- and post-conditions in defining p.
As a result, the shortest paths in Figs. 1 and 2 are quite different. Most notably, as we pointed out in the previous section,
the existence of a path in the static graph (Fig. 1) does not guarantee the existence of a path in the temporal graph: we see
that while a path exists from A to D in Fig. 1, p(A, D, t3, t6) has no solution, and hence evaluates to null.

2.2.2. Average temporal proximity
A further concept we introduce is average temporal proximity, defined as
P(X, Y ) = Σp(X, Y , ti, null)/n, p(X, Y , ti, null) 6= null

where P(X, Y ) measures ‘‘on average, the time it takes to go from X to Y ’’. If any p(X, Y , ti, null) = null, then we ignore it
and decrease n accordingly. This means that P is not affected by temporarily unavailable paths. For example,

P(A,D) = (p(A,D, t1, null)+ p(A,D, t2, null)+ p(A,D, t7, null))/3 = (3+ 2+ 0)/3 = 1.67
We also define Pin and Pout as

Pin(X) = ΣP(i, X)/n, i 6= X, P(i, X) 6= null
Pout(X) = ΣP(X, i)/n, i 6= X, P(X, i) 6= null

where Pin(X) and Pout(X) are ameasure of ‘‘on average, how quickly is X reached by the rest of the network’’ and ‘‘on average,
howquickly doesX reach the rest of thenetwork’’ respectively. These are simply the columnand rowaverages of P discarding
the diagonal and null values.
In Table 2 we calculate P , Pin and Pout for our data. The unit of measurement for P is time, e.g. days.

2.2.3. Geodesic proximity
Our next metric is geodesic proximity, defined as
g(X, Y , ta, tb)

denotes the least number of hops between X and Y given temporal pre-condition ta for X and temporal post-condition tb
for Y . This measure discards the weights on the temporal graph, yet it is still subject to the temporal restrictions imposed
by the unidirectional waiting links (dashed links). Borrowing our earlier examples on temporal proximity, we see that:
• g(A,D, t1, null) = 3 (i.e. At1, At2, At7,Dt3),
• g(A,D, null, t5) = 5 (i.e. At1At2Et2Et3Dt3Dt5),
• g(A,D, t2, t7) = 2 (i.e. At2, At7,Dt7),
• g(A,D, null, null) = 1 (i.e. At7, Dt7).

The temporal pre- and post-conditions ta and tb operate in exactly the same way as in the case of calculating temporal
proximity p.
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Table 3
G, Gin and Gout for people using email. Unit is hops.

G Gout
A B C D E

A 0 3.5 1.5 2 1.5 2.13
B – 0 1.5 2 – 1.75
C – – 0 – – –
D – 2 – 0 – 2
E – 4.5 – 1.5 0 3
Gin – 3.33 1.5 1.83 1.5

2.2.4. Average geodesic proximity
In addition to calculating the geodesic proximity between nodes, we can also calculate the average geodesic proximity

between nodes, defined as

G(X, Y ) = Σg(X, Y , ti, null)/n, g(X, Y , ti, null) 6= null

where G(X, Y ) is a measure of ‘‘on average, how many hops is X away from Y ’’, hence discarding weighs on edges but
retaining edge directionality. As a concrete example,

G(A,D) = (g(A,D, t1, null)+ g(A,D, t2, null)+ g(A,D, t7, null))/3 = (3+ 2+ 1)/3 = 2.

We also define Gin and Gout as

Gin(X) = ΣG(i, X)/n, i 6= X,G(i, X) 6= null
Gout(X) = ΣG(X, i)/n, i 6= X,G(X, i) 6= null

where Gin(X) and Gout(X) are a measure of ‘‘on average, in how many hops is X reached by the rest of the network’’ and
‘‘on average, in how many hops does X reach the rest of the network’’ respectively. It may be argued that we should not
count hops between instances of the same person, as that represents ‘‘waiting’’ and does not really involve transmission of
anything. However, we have decided to retain such ‘‘waiting’’ hops in our measurements, because they represent distinct
events in time and opportunities that arise. We return to this point during our discussion.
In Table 3 we show G, Gin and Gout for our data.
In Table 3 the unit of measurement is hops (or temporal events). We see that each node is always 0 hops away from itself.

We note that AB is 3.5 hops, despite the fact that AB are a single hop away in a static graph representation (Fig. 1).

2.2.5. Temporal availability
To calculate P and G we discard any path with p = null and g = null respectively. Since P and G are average values,

we lose information about how many of the relative paths were actually available. For instance, P(B, C) = 2.5 which is
relatively small even though of the four instances of B only two can actually reach any instance of C. To get further insights
about the temporal relationships between nodes we introduce the concept of temporal availability, defined as

V (X, Y ) = size{g(X, Y , ti, null) 6= null}/n

where V is a measure of the probability that there exists any path between X and Y at any given moment. Note that instead
of g we can use pwith identical results. We also define Vin and Vout as

Vin(X) = ΣV (i, X)/n, i 6= X, V (i, X) 6= null
Vout(X) = ΣV (X, i)/n, i 6= X, V (X, i) 6= null

where Vin(X) and Vout(X)measure ‘‘on average, what is the probability that the network can reach X ’’ and ‘‘on average, what
is the probability that X can reach the network’’. From Fig. 2 we see that

V (A,D) = size{g(A,D, t1, null), g(A,D, t2, null), g(A,D, t7, null)}/3 = 1,

and

V (B, C) = size{g(B, C, t1, null), g(B, C, t4, null)}/4 = 0.5.

In Table 4 we show V , Vin and Vout for our data. We observe that each node is (obviously) always available to itself
(probability 1). We also observe that the pairs with V = 0 are also pairs that had null G and P in Tables 2 and 3.
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Fig. 2. A temporal graph representation of Table 1. For readability, ‘‘waiting’’ links are dashed. Solid links represent instantaneous email transactions, and
carry no weight.

Table 4
V , Vin and Vout between people using email. Unit is probability.

V Vout
A B C D E

A 1 0.67 0.67 1 0.67 0.75
B 0 1 0.5 0.75 0 0.31
C 0 0 1 0 0 0
D 0 0.75 0 1 0 0.19
E 0 1 0 1 1 0.5
Vin 0 0.6 0.29 0.68 0.17

Table 5
The phone dataset: list of telephone calls between people at distinct points in time. In case of multiple callees, we assume the caller has a direct line to
each of the callees, but the callees are not directly connected.

Caller Callee Time

A B t1 = 0
A C, E t2 = 1
E D t3 = 3
B C t4 = 5
B D t5 = 9
D B t6 = 14
A D t7 = 20

2.3. Temporal graphs and bidirectional data

We now revisit our dataset from Table 1 and slightly reinterpret it. Let us assume that instead of email, the
communications in Table 1 took place using an two-way technology such as the telephone. This reinterpretation of the
data is shown in Table 5.
Once again we construct a static graph representing information in an aggregated form. In Fig. 3 we create one node

per person, and link nodes that spoke together on the phone. The result is similar to Fig. 1, except that all edges are
bidirectional.
Next, we generate a temporal graph following the procedure described earlier. The only difference is that in step (3)

we create bidirectional links to represent phone calls, as opposed to unidirectional links representing emails. The result is
shown in Fig. 4.
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Table 6
P , Pin and Pout between people using the telephone. Unit is days.

P Pout
A B C D E

A 0 2 0.5 1.67 0.5 1.67
B 8 0 0.5 1.75 1 2.82
C 7.5 2 0 3 0 3.13
D 8.5 2 – 0 0 3.5
E 8.5 5 0 1 0 3.63
Pin 8.13 2.75 0.33 1.85 0.36

Table 7
G,Gin , and Gout between people using the telephone. Unit is hops.

G Gout
A B C D E

A 0 2 1.5 2 1.5 1.75
B 3.25 0 1.5 1.75 3 2.36
C 3.5 1.5 0 3 2 2.5
D 2.5 1.33 – 0 1 1.61
E 3 3.5 2 1.5 0 2.5
Gin 3.06 2.08 1.67 1.06 1.86

Table 8
V , Vin and Vout between people using the telephone. Unit is probability.

V Vout
A B C D E

A 1 0.67 0.67 1 0.67 0.75
B 1 1 0.5 1 0.25 0.69
C 1 1 1 1 0.5 0.86
D 1 0.75 0 1 0.25 0.5
E 1 1 0.5 1 1 0.86
Vin 1 0.85 0.42 1 0.41

Fig. 3. A graph representation of Table 5, produced by discarding all temporal information. Here, each node represents a person, while links denote people
who spoke on the phone.

In case of multiple callees, we have not created a direct link between the callees themselves in order to preserve our
semantics. Hence, Ct2 and Et2 are not linked directly although their temporal proximity p(C, E, t2, t2) is 0.1
In Tables 6–8 we show P , G, and V for our data.

3. Analysis of real-world temporal datasets

Wenowuse temporal graphs and theirmetrics to study real-world datasets. Herewe use the analytic tools we developed
in the previous section to explore the dynamic behaviour and properties of the datasets. We consider the Enron email

1 In this case, we assume that A initiated calls to C and E on two separate lines, so that C and E can only communicate with each other via A, albeit
instantaneously.
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Table 9
Details for our datasets, and their respective static and temporal graphs.

Dataset
Enron Cityware

Data points 3747 23705
Duration 30 days 15 days
Static graph
Nodes 944 881
Edges 3747 23705
Temporal graph
Nodes 3603 24697
Edges 6406 71226

Fig. 4. A temporal graph representation of Table 5. For clarity, each ‘‘waiting’’ link is dashed. Solid edges represent telephone conversations, and carry no
weight.

corpus,2 and data on people’s face to face encounters from the Cityware project [26]. We analyse each dataset using both
static graphs and temporal graphs.

3.1. Data

The datasets we consider are:
(1) The collection of emails sent within the Enron corporation during October 1999. For each email we know the sender
and recipient(s), and the exact date and time themessage was sent. In constructing a temporal graph for this dataset we
used unidirectional links to denote emails.

(2) The set of face to face encounters between people, as recorded by a Cityware scanner at a pedestrian walkway in the
University of Bath during the first half of March 2008. This data is collected by means of Bluetooth technology, which
records a unique ID for each person, and the date and time when two people were in very close range (up to 10 m) of
each other. In our temporal representation we use bidirectional links to denote face to face encounters between people.

Table 9 has more details about each dataset, while a visual representation of our data is shown in Fig. 5.

3.2. Results

In Table 10 we show P , G and V for each dataset. Here we have averaged the values for ever pair of nodes in each dataset,
ignoring null values.
In Fig. 6 we show the degree distribution for each static graph (left). Additionally, we show the distribution of instance

set size (Fig. 6 middle), which is a measure of how many nodes in the temporal graph represent each node from the static

2 Retreived from http://www-2.cs.cmu.edu/~enron/ on July 10, 2008.

http://www-2.cs.cmu.edu/~enron/
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Table 10
Average P,G and V values for our datasets, and standard deviation in brackets.

P G V

Enron 9.86 23.65 0.007
(6.45) days (15.19) hops (0.07)

Cityware 3.05 15.52 0.64
(2.59) days (0.43) hops (0.43)

Fig. 5. The left column shows the static graph representations of our data, the right column shows the temporal graphs. (top: the enron dataset, bottom:
the Cityware dataset). All layouts derived using the same algorithm (Fruchterman–Reingold).

graph. This data is taken from step (1) of constructing a temporal graph. Also, we show the distribution of link weights for
each temporal graph (Fig. 6 right).
In Fig. 7 we show the relationships between Gin– Gout , Pin–Pout , Vin–Vout for each dataset (top: Enron, bottom: Cityware).

Additionally,we have colour-coded each data point according to the corresponding node’s degree in the static graphs. Hence,
red point are nodes with high degree in the static graph, while nodes with lowest degree appear in blue, with yellow,
green and orange colours in between. Following the same colour coding, in Fig. 8 we show the relationship between Vin–Pin,
Vout–Pout , Vin–Gin, and Vout–Gout .
Finally, in Fig. 9 we show histograms of P for both datasets. Note that the x-axes in this figure are in days, while the y-axes

are frequency.

4. Discussion

In this paper, we introduced temporal graphs, and demonstrated how to construct them using a minimal dataset with
either unidirectional or bidirectional data (e.g. email vs. phone). In each case we show how to derive various node metrics,
including the average temporal proximity P , average geodesic proximity G, and temporal availability V . Furthermore, we
analysed two real-world datasets using our metrics, and we now discuss the types of insights that our analysis has enabled.
Temporal graphs are a tool for understanding the dynamic properties of a dataset and the corresponding entities and

relationships it represents. In considering the temporal dynamics of a dataset, P is a measure of how quickly one person can
reach another in terms of time, G give us insights into the number of hops/events/opportunities that take place before one
person reaches another, while V is the probability that a node can reach some other node at any given time. Depending on
the domain, one measure may be of greater interest that another. For example, when considering epidemics and diffusion
we are more likely to be interested in the amount of time it takes for someone to be infected (P). On the other hand, if
we are considering the spread of information through an opportunistic mobile ad-hoc network of sensors and devices, G
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Fig. 6. For each dataset we show the distribution of degree (log–log plot), instance set size (log–log) and link weight. Degree distribution is calculated for
static graphs. All y-axes show cumulative probability p(X ≥ x).

may be of more importance because it represents the number of decisions that the forwarding algorithm needs to make
(e.g. decide to keep the information on the current device, or decide to transmit the information to a nearby device), which
has repercussions for the performance of the system as a whole.
Similarly, Pin and Pout measure a person’s relationship with the rest of the network in terms of absolute time, Gin and Gout

give us insight into the person’s relationship with the network in terms of hops, while Vinand Vout are the actual probability
that a person can reach or can be reached by the network as a whole. Hence, all these metrics help us assess the suitability
of nodes for receiving or broadcasting information over time.
In our analysis of the Enron and Cityware data we wish to better understand how information flows, or can flow, in

these networks over time. In the case of Enron we assume that the information flows via emails, while for the Cityware data
we assume that information can flow either through people’s face to face encounters or through their respective mobile
devices. Understanding how people’s mobile devices can opportunistically spread and receive information is part of an
ongoing research towards building mobile peer-to-peer applications for data exchange.
From Table 10 we see that the Cityware community is muchmore ‘‘dense’’ and ‘‘tighter’’ than the Enron community. The

people in the Cityware dataset are both quicker in reaching each other and require far less hops than the Enron individuals,
even though the high standard deviation for Enron’s values suggests that some individuals are very well connected. What
is striking however is the extremely low V for Enron, suggesting that only a small amount of temporal paths are actually
available on average. Hence we can argue that information does not flow as well between the Enron individuals.

4.1. Structure

In terms of structure, Fig. 6 interestingly suggests that the two datasets are quite similar. The degree distribution d in
both static graphs follows an approximate power law as we see in Fig. 6 (left). This is to a large extent an expected result as
similar scale-free features have been observed before when analysing human relationships e.g. Ref. [4].
A further similarity between the two datasets is in the distribution of instance set size. Recall that when constructing a

temporal graph, each node becomes a set of instances representing the node over the course of time. In Fig. 6 (middle) we
show just how many instances did we have to create in this process. For both datasets the set size follows an approximate
exponential decay. This quantity represent the number of times a particular person appears in the dataset, hence it is a good
indication of how many opportunities that person will have to receive or transmit information.
Finally, in the right of Fig. 6 we show the linkweight distributionwhich again follows an approximate exponential decay.

This quantity represents the amount of time between subsequent appearances of a specific node, hence the frequency with
which a node is active in the network. These metrics suggest similarities in the way both networks are structured: the
number of links that each person establishes in each datasets, the number of times each person appears in the dataset and
the time between subsequent appearances all follow a very similar distribution.

4.2. Within-metrics analysis

To explore further the reason why given our datasets’ structural similarities the average values for P,G and V vary so
much,we turn to Fig. 7. Herewe split each of P,G and V in terms of their in and out components (left: Enron, right: Cityware).
Each data point represents a person, and we have colour coded all points according to the number of connections (i.e. an
indication of centrality), ranging from red to yellow, orange and blue (Fig. 7.1 and Fig. 7.2). In terms of P we see that in the
Enron dataset some people are very quick in reaching the network and being reached by the network (bottom left corner
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Fig. 7. Correlation between Gin–Gout , Pin–Pout , and Vin–Vout . Left column is the Enron dataset, right column is the Cityware dataset. The data is colour-coded
according to degree d (calculated on the static graphs). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

7.3). It is interesting to note, however, that some red data points appear in the top of 7.3, suggesting individuals highly
connected locally but slow in reaching the whole network. Similarly in this graph we can identify locally low-connected
individuals who can nevertheless reach the network very quickly.
Considering P for Cityware (7.4)we identify roughly two clusters of people. In addition to themain clusterwe see a cluster

extending towards the bottom right corner of the graph, itself made of a series of smaller clusters. These are individuals who
can very quickly reach the network, but are slow to be reached. Furthermore we observe that data points’ colour roughly
changes as we move from the bottom-left towards the top-right, hence suggesting that as nodes gain more links they are
quicker to reach the network and quicker in being reached.
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Fig. 8. Correlation between Vin–Pin , Vin–Gin , Vout–Pout , and Vout–Gout . Left column is the Enron dataset, right column is the Cityware dataset. The data is
colour-coded according to Figs. 7.1 & 7.2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

A comparative analysis between 7.3 and 7.4 suggests that the Enron dataset is much less structured, having people who
are extremely quick in reaching the network and being reached by the network, but also highly-connected individuals who
are extremely slow at propagating information through the network. On the other hand, the cityware data suggests that the
variation between people is much smaller. This distinction may also reflect the difference between a business environment
where things need to get done quickly by small number of key people, as opposed to the Cityware data which reflects the
relatively quiet and time-tabled University environment. In the latter case a small number of people are highly connected
because they regularly visit or pass through the physical area where the data was collected.
Considering the average geodesic proximity of Fig. 7.5 and 7.6 we once again observe the messiness of the Enron dataset

as opposed to the structure of Cityware. In 7.5 we observe that many individuals can reach and be reached by the network
in very few steps, even less than the best-performing individuals in the Cityware data. It is interesting to note that in 7.6 the
average path of nodes reaching to the network is about 15 hops with relatively little variability. This is not observed when
we look at the length of incoming links (Gin), where in addition the colour of data points is a very good indicator of how
easily a person can be reached by the network.
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Fig. 9. Histogram of P for both datasets (top: Enron, bottom: Cityware). y-axis is frequency, x-axis is days.

Finally, the temporal availability V highlights a striking breakdown in the Enron dataset: half the people are very hard
to reach, while the other half are relatively easier to reach (7.7). And once again we observe a split between the highly-
connected (red) nodes: half are hard to reach, half are not. On the other hand, 7.8 suggests that in the Cityware dataset there
is an apparent inverse relationship between nodes’ ability to reach the network and being reached by the network, mostly
followed by low-degree nodes (blue and orange). These represent people whowere seen relatively few times in our dataset.
If such a person was observed near the start of our observation, they would appear in the top-left corner of the graph: they
can reach many subsequent devices, but they cannot be reached since they never reappear. If on the other hand such a
person was seen towards the end of our observation, then they would be good at receiving information from the network
but bad at reaching any of the previous seen people, hence they would tend towards the bottom-right hand corner of 7.8. As
a person starts to appear more often (e.g. green, yellow or red) then they are increasing their chances of being able to send
and receive data from then network.

4.3. Between-metrics analysis

We now consider our datasets in terms of between-metrics analysis. We explore our two datasets by looking at how
temporal availability V relates to how quickly and in how many hops individuals can communicate. We already saw in
Fig. 7.7 that the Enron dataset is quite abruptly split between individualswho can be reachedwith relatively high probability
and individuals who are most likely unreachable. We explore this dichotomy further in Fig. 8.1 and 8.3 where we consider
its relationship to temporal and geodesic proximity Pin and Gin. In these figures, we observe an ‘‘hourglass’’ silhouette,
suggesting that despite their differences in incoming availability, the amount of time it takes to reach individuals varies
both within the high availability and low availability groups. The same holds for geodesic proximity, where we find low-
availability individuals being both very close and very far from the rest of the network (bottom-left and bottom-right in 8.3).
A similar analysis for the Cityware data yields completely different results. Here we observe that highly-degree

individuals (red) are both highly-available and quickly reached (top-left in 8.2) as well as reached in a small number of hops
(top-left in 8.4). For low-degree individuals (blue & orange) we observe a linear relationship between the probability that
they can be reached and the amount of time inwhich they can be reached. As such, thosewho are on average quickly reached
have relatively few incoming temporal paths available. On the other hand, those with slightly greater Pin are much more
likely to be reachable. Once again, this can be attributed to low-degree individuals who appear early or late in the dataset.
High-degree individuals on the other hand tend to cluster in the top-left corner of 8.2, suggesting both high availability and
relatively short temporal proximity.
It is interesting to note themassive shift in the data point going from 8.2 to 8.4. Most data points have shifted to the right,

such that colour becomes a very good predictor of how easily nodes can be reached from the rest of the network (we also
observed this in 7.6). Hencewe find that for low-degree nodes a large number of hops is required before they can be reached
— even though this happens in a relatively short period of time. From 8.2 and 8.4 we conclude that high-degree individuals
are very good information receptors as they can be reached quickly and easily from the rest of the network, and with very
high availability. As nodes connectivity is gradually reduced however, the time it takes to reach them and the number of
hops very quickly increase. This is not the case in the Enron dataset, where even low-degree individuals are still relatively
quickly and easily reached.
Next, we consider individuals’ ability to transmit information to others in the network. In the Enron datasetwe found that

many individuals had a much higher chance of reaching others, i.e. high Vout in 8.5 and 8.7, as opposed to being reached by
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others. Furthermore we note that the amount of time and the number of hops individuals need to reach others is relatively
consistent. In the Cityware dataset, we observe a strong linear relationship between the probability of being able to reach
someone and the number of days this will take (8.6). In the same figure we note that most high-degree individuals score
relatively low in being able to find a path to transmit information, albeit when they find one they are able to reach the others
quite quickly. However the whole dataset is shifted to the right when we consider the geodesic proximity for transmitting
information to the network. In this case we observe that most paths are at least 15 hops long (something we also verify in
7.6). This seems to be a lower bound which limits all individuals, even those with high probability of finding a path to their
recipient.

4.4. Frequency analysis

In Fig. 9 we have plotted histograms of P for both datasets. Here we examine every single pair of nodes in each dataset,
and calculate its temporal proximity. We then bin our all values as seen in the two histograms in Fig. 9. It is important to
note the following crucial detail about our histograms. The x-axis is real time, hence the interval between the 0 and 1marks
represents 0 to 24 h, the interval between the 1 and 2 marks represents 24 to 48 h, and so on.
A similarity across both histograms is that there are local maxima near full integer values, and local minima near 0.5

values. In other words we observe relatively more pairs of individuals having temporal proximity that is the multiple of full
day, while relatively fewer have temporal proximity that includes half-days.We argue that this is evidence of the expression
‘‘daily routine’’ taken literally. Herewe observe that communication and activity takes place in daily ‘‘waves’’: people reading
email and responding, people visiting the university and going towork or class. From the histogramswe see that if a temporal
path does exist between two nodes, then it is most likely to ‘‘ride the wave’’ of daily routine and be instantiated when most
activity takes place.
Despite these similarities, however, the two histograms exhibit a striking difference in terms of regularity. The Enron

dataset (top) is highly erratic as opposed to the wave-like distribution of the Cityware data. We see that in the Cityware
dataset if a temporal path exists between two people it is much more likely to be quick. Furthermore, the probability
of a temporal path being long gradually decreases at its length increases. On the other hand, we observe distinct peaks
throughout the Enron dataset, with many temporal paths being up two 3 weeks long.

4.5. Implications

The analysis of designed system, such as queuing systems or engineered networks of components, can yield elegant
and conclusive results because these are well-defined systems with well-defined functions and objectives. In this paper
the analysis focuses on loosely defined, non-designed and non-engineered systems. Here we develop a notation and
methodology for analysing and gaining insights into such systems. Our results remain on a relatively generic level because
we have little contextual information about the people represented in our data. Additional information, such as people’s age
anddemographics, or people’s roleswithin the Enronorganisation,would enhance our analysis, yieldingmuchmore tangible
results. Nevertheless, our analysis does highlight interesting similarities and differences between the two communities we
study.
There are a number of implications arising from the metrics and insights we have derived from our temporal graph

analysis. First, we are able to use our metrics to compare relative data sets and understand the similarities and differences
in people’s temporal behaviour. We found that the Enron dataset is much more erratic, messy, and extreme, while the
Cityware data was underpinned by consistency and routine. This was despite the fact that both datasets exhibit very similar
structural properties.
In addition, our analysis can also be used to understand the different role of individuals within their network, their

potential for sending and receiving information, and the network’s ability to propagate this information in general. For
instance, if we are interested in diffusion processes within these networks, we know that individuals who are well-
positioned to receive information quickly are not necessarily good at finding the temporal paths to propagate this
information through the network. Specifically, in the Enron dataset it is even possible that well-connected individuals may
actually be worse at disseminating information than others.
Furthermore, our graphs are very good as a tool for comparing diffusion speeds through networks. For instance, we see in

Fig. 7.4 that within 3 days the bulk of individuals in the Cityware dataset will have access to the diffused information, while
in the case of the Enron dataset the respective duration is about 12 days. Yet we observed that Cityware dataset had a hard
bound of 15 hops required before one can be reached, while within the Enron dataset there are potentially much shorter
paths.
This kind of analysis is also useful in developing and optimising communication systems that take advantage of the

opportunistic behaviour of human contact and interaction. Such ad-hoc peer to peer networks work best when we can
reliably identify individuals who have a good chance of forwarding information to the ultimate recipient both quickly and
in the least number of hops. Our analysis in Fig. 8 demonstrates the relationship between speed (in terms of both time and
hops) versus chance of success. Thesemay be used as a basis in developing forwarding algorithms, or expressing the inherent
differences between two different sample populations.
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5. Conclusion and ongoing work

In this paper, we have presented temporal graphs which are a graph representation that can retain rich temporal
information about the underlying temporal dynamics. A key strength of graphs in general is their amiability for use in
communicating and describing to others our data, as well as for deriving concrete universal metrics that are well studied
and understood across domains.
Temporal graphs offer a basis for obtaining the same benefits when dealing with inherently dynamic data, both for

describing and communicating the data itself, as well as for analysing and understanding its properties. In this paper, we
present an array of metrics that can be used to characterise a temporal dataset, and use these to compare two distinct real-
world datasets. A key benefit of temporal graphs is that they rely on standard shortest-path algorithms, hencemost existing
software tools can easily cope with temporal graph analysis.
A key assumption we havemade in this paper is that temporal events have no duration in themselves. While this may be

an appropriate assumption for email communication, the same is not necessarily true for face-to-face communications and
other domainswhere the concept of temporally overlapping events is crucial.We are currently working towards developing
the necessary tools for being able to express event duration in our temporal graphs.
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Appendix. Generating temporal graphs

Code for generating temporal graphs

<?php
$file = @fopen(’data.txt’,’r’);
$last_seen["dummy"] = 11; // instantiate global variable
$two_way = false; // are we using 1- or 2-way technology? Fig2 vs. Fig4

function attach_instance($device,$date){
// See if a device has appeared previously. If so, create a directed link
// from previous instance to this instance. The weight of the link is the
// time difference between the two instances.
global $last_seen;
$previous_date = $last_seen[$device];

if(($previous_date != "") && ($previous_date != $date)){
$diff = $date - $previous_date;
echo $device.$previous_date." \t ".$device.$date." \t ".$diff."\n";

}
$last_seen[$device] = $date;

}

while(!feof($file)){
$line = fgets($file);
$items = explode(",", $line);
$date = trim($items[0]);
$sender = trim($items[1]);
$recepient = trim($items[2]);

attach_instance($sender,$date);
attach_instance($recepient,$date);
echo $sender.$date." \t ".$recepient.$date." \t 0\n";
if($two_way == true){

echo $recepient.$date." \t ".$sender.$date." \t 0\n";
}

}
?>
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Sample input & output.

Input file
(see Tables 1 and 5)

Ouput for Fig. 2: Output for Fig. 4:

0,A,B A0 B0 0 A0 B0 0
1,A,C A0 A1 1 B0 A0 0
1,A,E A1 C1 0 A0 A1 1
3,E,D A1 E1 0 A1 C1 0
5,B,C E1 E3 2 C1 A1 0
9,B,D E3 D3 0 A1 E1 0
14,D,B B0 B5 5 E1 A1 0
20,A,D C1 C5 4 E1 E3 2

B5 C5 0 E3 D3 0
B5 B9 4 D3 E3 0
D3 D9 6 B0 B5 5
B9 D9 0 C1 C5 4
D9 D14 5 B5 C5 0
B9 B14 5 C5 B5 0
D14 B14 0 B5 B9 4
A1 A20 19 D3 D9 6
D14 D20 6 B9 D9 0
A20 D20 0 D9 B9 0

D9 D14 5
B9 B14 5
D14 B14 0
B14 D14 0
A1 A20 19
D14 D20 6
A20 D20 0
D20 A20 0
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