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INTRODUCTION 
Modern brain sensing technologies provide a variety of 
methods for detecting specific forms of brain activity. Only 
in recent decades advances have been made in neuroscience 
and brain sensing technologies in order to monitor the 
physical processes within the brain that correspond to 
certain forms of thought [1].  

There are two types of Brain-body interfaces (BBIs), 
namely invasive (signals obtained by surgically inserting 
probes inside the brain) and non-invasive (electrodes place 
on body). Brain activity produces electrical signals that can 
be read by electrodes placed on the skull, forehead or other 
part of the body (the skull and forehead are predominantly 
used because of the bio-potential in these areas) [1].  

The cost, size and complexity of many research systems 
obstruct evaluation with participants outside research 
laboratories. Thus most BBI evaluations have been 
laboratory exercises [2]. By using a non-invasive approach, 
research teams are able to get out from laboratories and 
medical facilities. 

Primarily driven by growing societal recognition for the 
needs of people with physical disabilities, researchers have 
used these technologies to build brain-computer interfaces 
(BCI’s), communication systems that do not depend on the 
brain’s normal output pathways of peripheral nerves and 
muscles. In these systems, users explicitly manipulate their 
brain activity instead of using motor movements to produce 
signals that can be used to control computers or 
communication devices. The impact of this work is 
extremely high, especial to those who suffer from 
neurodegenerative diseases or other brain injury [1]. 

Although removing the need for motor movements in 
computer interfaces is challenging and rewarding, full 
potential of brain sensing technologies as an input 
mechanism lies in the extremely rich information it could 
provide about the state of the user. Having access to this 
state is valuable to HCI researchers because it may allow us 
to derive more direct measures of traditionally elusive 
phenomena such as task engagement, cognitive workload, 
surprise, satisfaction, or frustration. These measures could 

open new avenues for evaluating systems and interfaces. 
Additionally, knowing the state of the user as well as the 
tasks they are performing may provide key information that 
allow to design context sensitive systems that adapt 
themselves to optimally support the state of the user [1]. 

In this paper, we focus on the electroencephalograph 
(EEG), a technology used everyday in medical facilities and 
the most commonly used technology in contemporary BCI 
research. For general review of BCI research see [3,4,5].  

Much EEG work related to the problem of task 
classification, which has received significant attention 
because BCI technology is most useful as an input control 
or communication device if the system is capable of 
discriminating at least two states within the user. With this 
ability, a computer can translate the transitions between 
states or the persistence of a state. Previous methods for 
accomplishing this can be divided into two approaches: 
operant conditioning and pattern recognition. Operant 
conditioning places the user in a tight feedback loop with 
the system output and the user must learn how to control 
their brainwaves in order to achieve the desired results. This 
approach is supported by Adaptive Brain Interfaces (ABI) 
that requires a training period [9]. On the other hand, 
pattern recognition places the burden on signal processing 
and machine learning techniques in order to recognize the 
signals associated with mental states or activities of 
untrained individuals without feedback from the system. 
The benefit of pattern recognition is that the tedious 
training and adaptation needed to bridge the gap between 
human and machine is performed by the computer rather 
than the human. From an HCI perspective, this approach is 
much more attractive because it can be applied to detecting 
and classification arbitrary states, rather than having the 
user generate pre-trained states on demand [1]. We utilized 
this basic approach in our work. 

HARDWARE 
This study required the monitoring of non-standard input 
(namely gaze and cognitive activity) as users completed the 
tasks. Specialized hardware was thus required to reliably 
capture the data. 
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In order to measure and record gaze information (or where 
the experiment participant is looking), we utilized eye 
tracking technology by Tobii [6]. This allowed us to 
monitor the focus of the participant’s eyes as he or she 
scanned the provided images. Readings were made at an 
average rate of 70 readings-per-second. 

To measure cognitive activity, we used the EPOC Headset 
distributed by Emotiv [7]. This device rests is worn on the 
head and has fourteen sensors to acquire neurological 
signals. The sensors make readings at an average of 150 
samples per second. These readings are then wirelessly 
transmitted to a PC via Bluetooth. 

SOFTWARE 
We wrote three applications in order to capture and log the 
data and to present visual stimuli to the participants. 

Both of the aforementioned specialized hardware devices 
required a dedicated program to capture input data. These 
programs were written in C++. After the data is read, it is 
transmitted over Ethernet. Each program uses a unique 
Ethernet port so that recipients can distinguish the source of 
the data. 

The program that receives this data as input was 
implemented in Java. It acts as a server, receiving the data 
and logging it to a file in real time. 

We designated a single program to log data for two key 
reasons. First, this method yields a comprehensive log file 
with data from different sources interspersed according to 
time. Secondly, this method avoids concurrency issues that 
can arise when multiple independent processes write to the 
same file. 

The same server program is responsible for displaying 
images to the participant and advancing images when the 
user clicks the mouse button. 

EXPERIMENT DESIGN 
In our research, we were particularly interested in cognitive 
response to visual stimuli. Because perception necessarily 
comes before any report of perception, we took special 
interest in the moment of perception. We made it our goal 
to find recognition patterns in brain waves which preceded 
the physical act of reporting. 

In order to prompt recognition patterns, we chose to ask 
participants to find errors (or “bugs”) in computer code. 
This task suited our needs because bugs are not 
immediately apparent and require critical thinking to 
recognize. 

First, we needed to write sample code which we could 
intentionally populate with errors. We chose to use the C 
programming language because of its relative simplicity 
and its ubiquity (C and C++ together are used in more than 
25% of today’s software projects [8]). We chose to write 
functions instead of full-fledged programs in order to 
minimize language-specific initialization code (i.e. 

including packages, declaring program entries, etc.) which 
could confuse participants. 

We defined three distinct types of errors to insert into our 
code: lexical, syntactical, and logical. Lexical errors are 
instances of misspelled variables or functions. Syntactical 
errors include missing parenthesis or invalid characters. 
Logical errors are any errors which result in syntactically 
correct code but which do not serve the intended purpose. 

The sample code was segmented into three equally-sized 
sections. We created a test instance for each of the three 
error types in each of the three sections, resulting in nine 
distinct test cases. (Please refer to the appendix for an 
example task.) Each test case was repeated three times so 
that the experiment contained twenty-seven tests in total. 

STUDY 

Participant demographics   
The study comprised a total of 9 college-educated 
participants--7 males and 2 females. The age range for the 
participants was 21-35 years, and their backgrounds ranged 
like Computer Science, Human Computer Interactions and 
Psychology.   

Problems encountered 
The Emotiv headset required elaborate setup procedure 
which required significant time and effort for the 
moderators as well as the participants of the study. Often 
the electrodes were not sufficiently lubricated to obtain 
EEG readings, or the electrodes failed to make sufficient 
contact with the participant's scalp while wearing it. It can 
be fairly speculated that the frustration in setting up the 
Emotiv headset may have had an impact over the initial set 
of EEG readings. It was also interesting to note that 
allowing the participants to place the Emotiv EPOC headset 
yielded better results, despite their not knowing anything 
about the headset itself. 

The study relied on a client-server model for 
communicating with the eye tracker as well as with the 
Emotiv headset. It was noticed that when the eye tracker 
client was started after the Emotiv client, the server 
program was prevented from reading further data from the 
Emotiv client. To avoid this, the eye tracker client was run 
before the Emotiv client. 

Preliminary findings 
Of the 323 megabytes of data that was obtained from the 
participants, all the successful cases were narrowed down 
and the following data was summarized: 

- Only 65 errors from a total of 216 errors were 
found by the 8 participants. 

- Of these, 15 errors were syntactical, another 15 
errors were logical and another 35 errors were 
lexical in nature 
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FUTURE WORK 
Our next steps involve interpreting the corpus we have 
generated. There are many ways to do this, and we have 
begun planning various approaches. 

One approach involves searching for trends within the 
successful trials. We use the compiled list of all successful 
cases, where the users were able to identify and locate 
errors. We plot the EEG data for a particular participant to 
show the brain activity, specifically looking at the time of 
identification of a problem to the time he takes an action 
and clicks the error. From here 2 approaches can be taken. 
Either we can try to trigger an action immediately on 
identification of the problem and thus minimize the time 
involved in explicitly taking an action on the user's side. Or, 
the brain activity can be analyzed to find points where the 
user subconsciously recognizes the error without explicitly 
realizing it. If such points can be correctly identified, the 
user can be aided in quickly seeing the exact errors 
minimizing the time involved in conscious recognition. 

The data obtained show the electrical signals of the 
participant's brain from the time he is presented with the 
problem until he clicks for the next image. This can be 
plotted over time to analyze how his brain reacted to a 
specific problem. The brain patterns can be further analyzed 
to see the difference in reaction to cases he was sure of the 

solution, cases he was making a guess, or other cases where 
he had was unable to determine the solution. 

Further study designs 
While this study revolved around a debugging task, 
completely different tasks could be constructed to collect 
further data. 

One such task is recognizing a slightly out-of-place feature 
of an otherwise-normal image. For instance, the user may 
be presented with an image of coffee beans where a human 
face is disguised to blend in amongst them. Completing this 
task would involve the user to identify face shapes and 
distinguish them from the coffee beans. 

A related task involves finding slight anomalies in patterns. 
For instance, the user may be presented with a field of the 
letter N repeated many times over. He would be tasked with 
locating the single occurrence of the letter M amongst them. 
This is a simpler task than the former study as the user to 
has only to focus on the structure of the letters to find the 
solution 

These proposed tasks are more diverse in nature compared 
to the somewhat rigid debugging task. However they 
require less use of tacit knowledge and are primarily based 
on pattern recognition. 

 



 4 

REFERENCES 
[1]Gnanayutham, P., Cockton, G. (2009). Adaptative 
Personalisation for Researcher-Independent Brain-Body 
Interface Usage.  Boston, CHI, 3004-3018. 

[2] Lee, J. C. and Tan, D. S. Using a low-cost 
electroencephalo-graph for task classification in HCI 
research. In Proc. UIST (Montreux, Switzerland). ACM, 
2006, 81-90. 

[3]Coyle, S., Ward T., & Markham, C. (2003). Brain-
computer interfaces: A review. Interdisciplinary Science 
Reviews, 28 (2), 112-118. 

[4]Mason, S.G., & Birch, G. E. (2003). A general 
framework for brain-computer interface design. IEEE 
Transactions on Neural Systems and Rehabilitation 
Engineering, 11(1), 70-85. 

[5]Wolpaw, J.R., Birbaumer, N., McFarland, D.J., 
Pfurtscheller, G., & Vaughn, T.M. (2002). Brain-computer 
interfaces for communication and control. Clinical 
Neurophysiology, 113, 767-791. 

[6] http://www.tobii.com/ 

[7] http://www.emotiv.com/ 

[8] 
http://www.tiobe.com/index.php/content/paperinfo/tpci/ind
ex.html 

[9] J. del R. Millán, “Adaptive brain interfaces,” 
Communications of the ACM, vol. 46, pp. 74–80, 2003. 

 
 


