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Abstract 
 
Sleep deprivation attacks are a form of denial of 
service attack whereby an attacker renders a 
pervasive computing device inoperable by draining the 
battery more quickly than it would be drained under 
normal usage.  We describe three main methods for an 
attacker to drain the battery: (1) Service request 
power attacks, where repeated requests are made to 
the victim for services, typically over a network--even 
if the service is not provided the victim must expend 
energy deciding whether or not to honor the request; 
(2) benign power attacks, where the victim is made to 
execute a valid but energy-hungry task repeatedly, and 
(3) malignant power attacks, where the attacker 
modifies or creates an executable to make the system 
consume more energy than it would otherwise.  Our 
initial results demonstrate the increased power 
consumption due to these attacks, which we believe 
are the first real examples of these attacks to appear in 
the literature.  We also propose a power-secure 
architecture to thwart these power attacks by 
employing multi-level authentication and energy 
signatures. 

1. Introduction 
The ongoing proliferation of battery-powered 

computing devices has created a new type of “denial 
of service” attack:  If an attacker can drain a device’s 
battery, for example, by having it repeatedly execute 
an energy-hungry program, the device will be rendered 
inoperable, which Stajano and Anderson have called a 
sleep deprivation torture attack, or battery exhaustion 
[18]. Unlike other denial of service attacks where the 
attacker must keep up the attack in order to continue to 
deny the service, the attacker can quit attacking a 
battery-powered device once she has fully discharged 
the battery, and can then move on to attack another 
device. Just as the advent of computer networks 
enabled an increase in the number of computer 
viruses, Trojan horses, and other computer security 
breaches, the rising availability and increasing 
dependence on pervasive computing devices will lead 
to the creation and spread of sleep deprivation torture 
attacks. The battery in a pervasive computing device is 
thus a point of vulnerability and must be protected. 

Pervasive computing devices, e.g. notebook 
computers, personal digital assistants, and wearable 
computers, are intrinsic to making information 
available anywhere at anytime. There is an increasing 
reliance on such devices in education, business, 
emergency response, defense, and healthcare [11], and 
with increasing reliance comes an increasing need for 
security [14][23].  While much is known about how to 
protect pervasive computing devices from attacks on 
vulnerabilities they share with other types of 
computing systems, little is known about how to 
protect them from power-based attacks.  Sleep 
deprivation attacks are not presently widespread, but 
the potential exists for them to become more common.  
One of the goals of this paper is to raise the awareness 
of the pervasive computing community, so that the 
mechanisms for preventing and mitigating these 
attacks can be put in place before they become 
widespread. The attacks that we present here, if not 
thwarted, could potentially keep pervasive computing 
from being adopted by a wider group of users. 

Sleep deprivation attacks render a device inoperable 
by draining the battery more quickly than it would be 
under normal usage. In a typical mobile computer, the 
battery is expected to give a certain battery life under a 
set of usage conditions where the user is actively using 
the device for a small fraction of the time, and the 
device is idle the rest of the time.  When the device is 
idle, power management software puts the device into 
low power standby and sleep modes, extending the 
device’s battery life.  If an attacker can prevent the 
device from entering low power modes by keeping it 
active, the battery life can be drastically shortened. 
This paper defines three main methods for an attacker 
to drain the battery: (1) Service request power attacks, 
where repeated requests are made to the victim for 
services, typically over a network--even if the service 
is not provided the victim must expend energy 
deciding whether or not to honor the request; (2) 
benign power attacks, where the victim is made to 
execute a valid but energy-hungry task repeatedly, and 
(3) malignant power attacks, where the attacker 
modifies or creates an executable to make the system 
consume more energy than it would otherwise.  Our 
initial results demonstrate the increased power 
consumption due to these attacks, which we believe 



are the first real examples of these attacks on general 
purpose mobile computers in the literature. Our results 
show a baseline of what the effect of the attacks may 
be and the forms that they may take.  We expect that 
the sophistication and impact of these attacks may 
increase over time, as has happened with conventional 
worms and viruses, especially if the methods for 
mitigating the sleep deprivation attacks are added 
piecemeal to pervasive systems rather than designed in 
from the beginning. 

As will be described in section 3, data presented in 
[5] shows that an attacker could cut the battery life of 
currently available mobile computers by a factor of 30 
to 280. To put these numbers in perspective, if the 
expected battery life of a device is a month, an 
attacker could reduce the life to between 2.5 hours and 
24 hours. An attacker could thus leave the victim 
without access to the device much sooner than 
expected, reducing the battery life by one to two 
orders of magnitude. 

The remainder of this paper is organized as follows.  
Section 2 describes the related work.  Section 3 
discusses the potential forms and impact of the sleep 
deprivation attacks on general-purpose mobile 
computing systems. Section 4 describes our initial 
implementations of each form of the attack, our 
experimental setup, and our experimental results.  
Section 5 proposes a power-secure architecture that 
we believe will mitigate the impacts of the attacks. 
While this architecture is not yet fully implemented, 
we outline its major features. Section 6 provides our 
conclusions and possible avenues for future 
investigation.  

2. Related Work 
The work most closely related to this paper includes 

sleep deprivation attacks on sensor networks, power 
analysis of encryption devices, authentication in 
distributed environments, low power software design, 
and peak power estimation. 

To the best of our knowledge, the first mention in 
the research literature of rendering a battery-powered 
device inoperable by draining its battery has been by 
Stajano and Anderson [18]. There has been no 
systematic study of the attack, methods for preventing 
it, or implementations of it. The main interest in it has 
come from the wireless sensor network community 
[16].  A major difference between wireless sensor 
networks and general purpose mobile computing is 
that the power consumption of wireless sensors is 
dominated by the RF subsystem, so the focus there has 
been on limiting communication in order to thwart the 
attack. In a general purpose mobile computing device, 
limiting communication will not prevent all forms of 
the attack.  General purpose mobile computing devices 
also offer a much richer set of services than wireless 

sensor networks, and thus there are more forms for the 
attack to take on them.  Thus it is necessary to study 
the attacks on mobile computers to find ways to 
mitigate these other forms. 

Another seemingly major difference is that wireless 
sensor networks are typically unable to have their 
batteries recharged or replaced, and thus the sleep 
deprivation attack would appear to be more critical for 
them than for mobile computers.  However, in 
practice, the attack on a mobile computer would 
typically be just as critical in terms of denying its use.  
A mobile computer subjected to a sleep deprivation 
attack would likely not be able to have its battery 
replaced or recharged without the user stopping his or 
her current activity, finding a place to recharge the 
battery (assuming the charger has been brought along 
with the mobile computer), and then waiting until the 
battery is recharged.  For users in the field, e.g. 
emergency response workers, military personnel, etc., 
recharging or replacing the battery may not be an 
option, and thus the sleep-deprivation attack on mobile 
computers is just as critical as it is on wireless sensor 
networks.  For consumer applications, if an attack 
were not detected, the user would probably suspect 
that the battery of the device had become defective 
and was no longer able to retain any charge.    

One security issue involving power that has been 
widely studied is that of power analysis of encryption 
devices. Differential power analysis (DPA) attacks the 
key of a cryptosystem by measuring power 
consumption during encryption/decryption and finding 
the correlation between the power consumption and 
the value of bits of the key [6][17]. DPA has been 
demonstrated to reveal substantial portions of a key, 
for example, 48 bits of a 56-bit DES key.  However, 
unlike sleep deprivation attacks, DPA is an attack on 
the confidentiality of a device’s key, not the 
availability of the encryption device itself.  

The authentication process we envision for the 
proposed power-secure architecture shares many 
aspects with techniques for authentication in a 
distributed environment, such as Kerberos [7] or 
X.509 [4]. Kerberos depends upon the constant 
availability of a centralized authentication server, 
which is not applicable or desirable for the wireless 
networked environment.  In contrast, X.509 depends 
upon cryptographically signed certificates from a 
certificate authority; the authority does not need to 
always be available.  For battery-powered devices, 
authentication based upon X.509 may be applicable if 
the encryption algorithms and protocols are evaluated 
for their energy usage 

Research in low power design is also applicable to 
the problem, particularly in estimating battery life of 
mobile systems [12], measuring power consumption of 
software [1][19] and in creating low power software 



[13].  When services that consume too much energy 
are identified, it will be desirable to reduce their power 
consumption via low power compilation and source 
code transformations.  One major difference between 
attacks on batteries and low power design has is that 
the goal of low power design is typically assumed to 
be to lower the energy per operation of the device, 
which is a measure of both the power consumption 
and the execution time of an operation.  For attacks on 
the battery, the attacker's goal will be to maximize 
power consumption, without regard to the number of 
operations that are performed in a given amount of 
time. 

In regard to peak (or maximum) power, if the peak 
power is significantly higher than average power of 
the device, the battery can be depleted at a faster rate if 
the attacker can sustain the peak power consumption. 
Estimation of peak and maximum power has attracted 
attention in recent years [10][22], in which an attempt 
to place a bound on peak power dissipation is made.  
Taking the peak power further by one step, sustainable 
peak power generation that attempts to find a cycle 
with peak power is generated can be used to generate a 
power attack to test our system [2].  New methods for 
computing sustainable peak power are developed in 
which automatic generation of a functional vector loop 
for near-worst case power consumption is attained. 
The peak power measures obtained more than 70% 
tighter peak powers have been achieved [2]. 

3. Potential Forms and Impact of Sleep 
Deprivation Attacks 

We define three main forms of sleep deprivation 
attacks on general purpose mobile computers: Service 
request attacks, benign power attacks, and malignant 
power attacks. The goal of each type of attack is to 
maximize the power consumption of the target, 
thereby decreasing its battery life.  The attacks achieve 
this by keeping the target device busy, and preventing 
it from going into low power sleep modes. However, 
the mechanism for each attack is different:  

(1) Service request power attacks repeatedly make 
otherwise valid network service requests, such 
as telnet, ssh and web server requests, for the 
purpose of using up the device under attack's 
(DUA) battery capacity. This type of attack 
keeps the DUA busy authenticating/servicing 
the requests.  

(2) Benign power attacks, where the DUA is made 
to execute a valid but energy-hungry task 
indefinitely, such as displaying a hidden 
animated gif or executing a hidden Java script; 
though invisible to the user, the task secretly 
drains the energy source. The essential feature 
of the benign power attack is that the attacker 

provides data to a valid program that causes 
the program to execute in such a way that it 
consumes a pathological amount of power. 

(3) Malignant power attacks, where the attack 
maliciously penetrates the system and alters 
operating system kernel or application binary 
code such that more energy is needed to 
execute them; the altered binaries may or may 
not be functionally correct. These attacks will 
thus be either viruses or Trojan horses. 

In some cases, these attacks can be prevented or 
detected using existing security techniques.  For 
example, malignant power attacks can be detected 
using virus-scanning software.  But in other cases, for 
example, the benign power attacks, detecting the 
attacks using existing techniques will be difficult.  
There is a chance that the security techniques could 
themselves be used to mount a sleep deprivation 
attack: An attacker could send a virus that he knows 
will be caught by the target system's virus-scanning 
software, but the energy consumed by the virus-
scanning software may exhaust the battery if the 
attacker causes it to run repeatedly. 

A successful attack will maximize power 
consumption while presenting to the user the 
appearance that the system is behaving normally, with 
the possible exception of the battery status indicator. 
Side effects that one would expect to see of these 
attacks if they are not implemented subtly include the 
CPU fan turning on while the user is performing some 
action that does not normally cause the fan to come 
on, the system becoming less interactive than usual, 
and the hard drive spinning up immediately after a 
spin down. A successful attack will likely cause the 
user to believe that the battery has become defective 
and will no longer keep a charge.  We outline an 
architecture for detection in section 5 that we believe 
will detect all three forms of power attacks, even if the 
attacker is careful about not causing otherwise 
suspicious side effects. 

Another property of a successful attack is that it will 
utilize the subsystems that have the largest difference 
between idle or sleep state power consumption and 
active state power consumption. In the systems we 
present in Section 4, this was the CPU.  Thus our 
implementations of the attack tended to exercise it 
heavily. For other platforms, different subsystems may 
be more attractive targets. 

To illustrate the potential of these attacks, assume 
that the device uses power Pactive while active and 
power Psleep while sleeping, that PFR = Pactive/Psleep, 
and that the device has a usage duty factor of D 
(fraction of time that the device is active) [5].  Then 
the battery life, normalized to being asleep 100% of 
the time (D=0), is equal to 1/(1-D + PFR×D).  Since 
PFR is much greater than 1, in order to minimize 



battery life, one should increase D, increase PFR, or 
both.  Typically D is very small; the value reported in 
[5] was 0.0035, which is equivalent to using a device 
10 times a day for about 30 seconds at a time.  
Reported values of PFR for a range of PDAs and 
experimental mobile computers range from 30 for the 
experimental platforms (Compaq Itsy and IBM Linux 
Wristwatch) to 280 for the commercially available 
PDAs (Psion and Palm Pilot) [5].  

The aim of the attacks is to keep the device as 
active as possible, to make D=1. Assuming that in 
normal usage D is very small, then the battery life 
when under attack will be reduced by a factor of 
approximately PFR.  Given the range of values for 
PFR from above, an attacker could reduce the battery 
life of currently available mobile computers by a 
factor of 30 to 280.  Our experience with various 
notebook computers in the laboratory shows that the 
PFR for them is much smaller, on the order of 2 to 4, 
because they tend to be in the idle state rather than the 
sleep state when not active.  But even with these much 
smaller values of PFR, the battery life would be 
considerably shortened.  

In some circumstances the impact of the attack may 
be worse.  The above analysis ignores non-ideal 
capacity properties of batteries that may make the 
attack even more effective, because it implicitly 
assumes that battery life is inversely proportional to 
the average power.  In practice, the battery energy 
capacity depends upon the power consumption of the 
load [12][15].  As the power of the load increases, the 
total energy that is delivered by the battery decreases.  
Over a range of loads that can be reasonably expected 
of a mobile computer, the battery capacity may vary 
by nearly 30% [12]. What this means in practice is 
that, if an attacker can increase the average power by a 
factor of X, the battery life will be shortened by more 
than a factor of approximately X1+α, where α is in the 
range of 0.2 to 0.7 [9]. 

4. Power Attack Examples 
This section gives examples of each of the three 

types of power attack and includes experimental 
results of each attack on PDAs and a notebook 
computer. These examples are not meant to be 
exhaustive, but instead are intended to demonstrate 
that the attacks exist and that they have the potential to 
drastically decrease the battery life.  Before describing 
the attacks and the experimental results in detail, we 
first describe our experimental setup.  

4.1. Experimental Setup  
Data for the power consumption of the mobile 

devices was collected using an Agilent 3458A digital 
multimeter set to a sampling rate of 10,000 
samples/second. The multimeter was controlled by a 

computer that also stored the readings taken, using a 
triggering arrangement similar to that described by 
Flinn [1]. This arrangement allowed us to synchronize 
measurements over several trials and average them 
together.  

For the measurements, we used a notebook 
computer and two different PDAs for the devices 
under attack.  Results were measured on an IBM 
Thinkpad T23 notebook, a Compaq iPAQ model 3760 
PDA and a Compaq Itsy, a research prototype PDA 
[21]. The IBM Thinkpad has a 866MHz Pentium III 
CPU, 128 MB of memory and dual boots the Windows 
2000 and Linux operating systems. The iPAQ is a 
3675 model, with 64 MB of memory, running 
Windows CE version 3.0.  The Itsy is a version 1.5, 
with a 206 MHz StrongARM processor and 64 MB of 
memory, running Linux. Both the IBM Thinkpad and 
the iPAQ had PCMCIA slots, and we used an Orinoco 
Silver 802.11b wireless network card to provide a 
network connection to them for the service request 
attack results.   

For the IBM Thinkpad and the iPAQ, the screen 
brightness was a large factor in the power 
consumption; to provide consistent behavior from one 
trial to another, screen brightness was set to its 
minimum value during all measurements.  We also 
ensured that power management settings were the 
same for each trial.  

In order to be able to take the readings over 
multiple runs without having synchronization 
problems, the multimeter was made to start taking 
readings only after it received an external trigger.  A 
program was written that ‘sleeps’ for a fixed amount 
of time before giving out a pulse on a port that, in turn, 
was connected to the multimeter’s external trigger 
input.  This helped to begin the applications on the 
systems within a couple of milliseconds of each other 
over many runs.  The plots in this section show the 
power as a running average of 100 samples (10 ms) in 
order to filter out high frequency noise that makes it 
difficult to see the general trends. 

4.2. Description of the attack implementations 
We now describe some specific attacks that we 

have implemented, attacks that can be used on a 
variety of platforms.  As we said earlier, these 
examples are not meant to be exhaustive, but are 
meant to demonstrate the existence of the attacks and 
to give some indication of their potential impact.  
Furthermore, we are not claiming that these are the 
most potent forms of the attack.  While the examples 
we present here are straightforward and easy to mount, 
we suspect that there are more subtle vulnerabilities 
that can be exploited.  For example, all of our attacks 
change the state of the system from what would 
generally be considered an idle state, where the device 



appears to be on but is not actively performing any 
activity, to an active state.  More powerful forms of 
the attack would have the device appear to be in a 
standby state (which typically consumes much less 
power than being in the idle state) while in reality 
being active, e.g. having the screen off as if in standby 
but having a thread that is being executed on the CPU.  
The important point is that these are the first 
demonstrations of sleep deprivation attacks on general 
purpose mobile computers to appear in the literature.   

For the service request attack, we used repeated 
requests to an SSH server.  The requests were made 
with a correct username but a wrong password.  For 
the benign attack, we created an animated GIF that 
consisted of the same image shown repeatedly; to the 
eye it appeared to be unanimated. To provide a 
comparison point, we also measured the power 
consumption of an unanimated version of the same 
image.   

Finally, the malignant attack consisted of a program 
that repeatedly wrote and read an array. The length of 
the array was varied dynamically such that, initially, 
most of the array accesses resulted in cache hits, but as 
the array size was increased, most of the array 
accesses resulted in cache misses.  The program kept 
track of the amount of time to access the entire array; 
when the bandwidth dropped the program could tell 
when the array no longer fit into the cache .  As 
section 4.3 will show, in some systems cache misses 
consume more power, while in other systems cache 
hits consume more power. Thus an attacker using this 
attack will likely tune it to the particular target system. 

We tried all three attacks on both the IBM Thinkpad 
and the iPAQ, but because of the network and screen 
limitations of the Itsy we did not try the network 
service request or the benign power attack on it.  For 
the Itsy, we tried only the malignant attack; due to 
some interesting effects  of the CPU  speed  on  power 

Figure 1. Requests made to SSH server on the 
Thinkpad with wrong password. 

consumption, and because the Itsy was designed to 
allow power to be measured to both the CPU core as 
well as the entire system, we include the Itsy results 
for this attack because it allowed us to test our 
hypothesis about the CPU speed and its impact on the 
relative power cost of cache hits and cache misses.  

4.3. Experimental Results 
Service request attack: Figure 1 shows the results of 

the service request attack on the IBM Thinkpad 
running an SSH server.  The Y-axis denotes the power 
dissipated as a function of time (X-axis). As shown in 
Figure 1, the idle power (first five seconds) of the 
Thinkpad is approximately 10W. When the repeated 
denied service requests begin, the results show that the 
average power consumption increases by 
approximately 15%. Figure 2 shows the results of the 
same attack on the iPAQ running the SSH server. 
(Please note the difference in scale of the y-axis 
between Figures 1 and 2.)  Here the results are more 
dramatic, with about a 30% increase in average power 
consumption while the failed logons are taking place.   

Our initial form of the attack on the iPAQ used an 
FTP server but had relatively little power increase, 
about 5%. This was much lower than we initially 
expected, because on the iPAQ the 802.11b card is a 
large fraction of the overall system power.  Given the 
emphasis on this attack in the sensor network area, we 
assumed that the transmit and receive power of the 
802.11b card would dominate, but in fact the power 
consumption of the card while maintaining the 
wireless connection (approximately 1.2W) is only 
slightly less than while actively transmitting and 
receiving.  Thus the increase in power consumption is 
mainly due to the computation required by the 
requested service rather than the wireless 
communication, which is a major difference between 
this form of the attack on a wireless sensor network. If 

Figure 2. Requests made to SSH server on the 
iPAQ with wrong password. 



the power management of the 802.11b card were such 
that there was a larger difference between maintaining 
a connection and actively receiving/transmitting, then 
this attack would cause a larger increase in power 
consumption.  These results also show that, for general 
purpose systems at least, the computation required by 
a network service request should be limited to mitigate 
the potential for this form of the attack.  In Section 5 
we will address this by using multi-layer 
authentication for service requests.  

Benign power attack: The results of the benign 
power attack on the Thinkpad are shown in Figure 3. 
The animated GIF consumes about 80% more power 
than a non-animated GIF (18.4W vs. 10.2W).  This is 
significantly higher than a non-animated image, even 
though to the human eye the animated version appears 
to be the same.  Figure 4 shows the benign power 
attack results for the iPAQ; the animated image give 
consumes almost three times more power than the 

unanimated image, 1.15W for the animated image vs. 
0.43W for the unanimated image. (The average power 
for the iPAQ is lower than in the service request attack 
results because the 802.11b card was not present.) 

An attacker could thus embed an animated GIF in a 
web page in such a way that the user would think that 
it was unanimated while causing the user's device to 
consume considerably more power than if the image 
were actually unanimated.  The attacker does not need 
to modify the target system's software or hardware 
configuration in any way, nor does the attacker have to 
actively make a network connection to the target.  
Instead the attacker provides pathological data to the 
existing software on the system such that the system 
consumes more power than it would under normal 
usage.  This attack is probably the most difficult of the 
three attacks to defend against. 

Malignant power attack: Figures 5 and 6 show the 
malignant power attack on the Thinkpad and the 

 
Figure 3. Comparison of power consumption of 

animated GIF and non-animated GIF on the 
Thinkpad 

 
Figure 4. Comparison of power consumption of 
animated GIF and non-animated GIF on iPAQ 
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iPAQ, respectively. For the Thinkpad, the attack 
consumes 21.4W while hitting in the cache and 22.9W 
while missing in the cache, more than double the idle 
power of 10.2W. For the iPAQ, the attack consumes 
1.10W during cache hits and 1.17W during cache 
misses, about three times the idle power of 0.42W. 
One feature of our implementation of the malignant 
power attack is that on both the Thinkpad and the 
iPAQ, cache misses consume more power. 

For the Itsy, however, the situation is more 
interesting, as shown in Figure 7 and Figure 8.  The 
Itsy research prototype has the option to allow the user 
to change the CPU clock frequency.  The malignant 
power attack was run on the Itsy for two different 
processor speeds (206 MHz and 59 MHz).  At 206 
MHz, a cache hit consumes about 10% more power 
than a cache miss; at 59 MHz a cache miss consumes 
about 10% more than a cache hit.  

The plots in figures 5-8 show that if an attacker tries 
to drain the battery by exploiting the cache behavior, 
he must know about the particular hardware of the 
target.  The hardware configuration of the device 
under attack determines whether a hit or a miss in the 
cache consumes more power.  One option is to 
maintain an exhaustive database of all the devices and 
their clock frequencies, which seems impractical.  A 
more practical option is for the attacker to get the 
power information from the battery state.   

We have written an initial version of a self-tuning 
malignant power attack on the Thinkpad. It uses the 
battery information provided by the Thinkpad's 
Advanced Configuration and Power Interface (ACPI) 
subsystem [3] to monitor power consumption while 
the attack is underway. Once the array does not fit into 
the cache, the program chooses the array size that had 
the most power consumption.  The power consumption 
provided by ACPI battery interface is coarse; the 
power is sampled about once a second.  However, by 
allowing  each  size  of  the  array  to  be  accessed  for  

Figure 7. Power consumption during malignant 
power attack on the Itsy at 206 MHz 

about 30 seconds at a time, we are able to get adequate 
power information from the battery to distinguish 
whether hitting in the cache or missing in the cache 
consumes more power.  

As was stated in Section 3, if the system becomes 
noticeably less interactive, the user may become 
suspicious.  To avoid reducing the system's 
interactivity, our self-tuning malignant attack runs at 
the lowest priority, such that the only the idle process 
has lower priority than it. Thus it will run whenever 
the idle process would normally run, keeping the CPU 
active, without interfering with the performance of the 
user's other running programs. 

5. Towards a Power-Secure Architecture   
In order to guard against attacks that attempt to 

quickly drain the device’s energy source, we are 
currently implementing a hardware/software 
architecture for thwarting sleep deprivation attacks on 
general purpose mobile computing systems, which we 
call a power-secure architecture. The goal of the 
architecture is to provide some guaranteed fraction of 
the system's expected battery life. This section gives 
an overview of the architecture.  

The overall power-secure architecture employs two 
fundamental security features within the system: 
multi-layer authentication and energy signature 
monitoring.  The multi-layer authentication is 
designed to prevent energy loss from service request 
attacks by making sure that all untrusted services 
rendered consume less than a certain amount of 
energy. Additional resources are committed only to 
those requesters who have obtained further levels of 
trust. The energy signature monitor, which requires a 
self-contained unit to measure the system’s dynamic 
power and a database of reference signatures for each 
trusted application, is designed to catch intrusions that 
have entered the system to execute an energy-hungry 
application or service, either as a malignant or benign 

Figure 8. Power consumption during malignant 
power attack on the Itsy at 59 MHz 
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power attack.  

5.1. Multi-layer authentication  
In the event of a service request attack, repeated 

requests are made by the attacker to keep the device 
under attack (DUA) extremely busy. If the service 
requires authentication, such as telnet/ssh, traditional 
authentication approach will always perform a 
database lookup to match the password with username, 
thus drawing unnecessary current in the process.  
Likewise, services requiring no authentication, such as 
web page requests, can be used to force the DUA into 
thrashing mode, feverishly responding and servicing 
the requests, possibly denying regular and normal 
requests in the process.  

Figure 9 illustrates our authentication technique. 
The energy profile of a service is generally non-linear 
over the lifetime of the service as depicted in part (a) 
of the figure, thus repeated executions of one small 
portion of the service may consume less energy than if 
the entire service was repeated continuously. For 
example, if we allow the first T seconds to be executed 
before any authentication, the power profile under an 
attempted attack will be similar to that shown in part 
(b) of the figure, where the average power 
consumption is kept nearly constant.  On the other 
hand, if no measure is taken to prevent such attacks, 
the profile would look similar to part (c) of the figure, 
where repeated calls to the service drains a 
substantially more energy.  To find the time T at 
which a service request should be authenticated, for 

each service we calculate a crippling energy level. 

5.2. Crippling energy level 
The crippling energy level is the worst-case 

repeated-access to a service that can cripple the device 
in a given amount of time. This pre-determined 
crippling energy, ec, for each service is computed in 
the following manner.  Let us assume the total energy 
available for the device is E, and we would like to 
have a minimum lifetime of the device to be at least L.  
In order to guarantee that the device lifetime is greater 
than L, we must make sure that repeated requests to a 
particular service consume no more than E energy in 
L.  Because the energy consumption of the entire 
service may be non-linear over the lifetime of the 
service, servicing repeatedly a small portion of the 
service may consume less energy than repeatedly 
servicing the entire service.  Thus, if the energy 
consumption for the first T seconds is ec, then we must 
ensure that E/(ec / T) >= L, or ec <= E×T/L. 

One difficulty with this authentication approach is 
that we must guarantee that repeated authentication 
(the first initial portion of the executable) would not 
reduce the lifetime of the device to be less than L. 
Otherwise an attacker can exhaust the battery simply 
by repeatedly forcing the authentication to occur. 
Therefore, not only must this initial authentication be a 
lightweight process, it must also satisfy the crippling 
energy criterion.  It may not be possible to have a 
single, lightweight authentication that is sufficiently 

Figure 9.  Power profiles of a service showing the concept of the crippling energy level 



difficult to defeat.  Thus we may have to use multiple 
layers of authentication, with services that have higher 
energy requirements going through several stages of 
authentication as they run, with each layer possibly 
requiring more energy.  

If a service can complete before it consumes the 
crippling energy, then it does not need to be 
authenticated: Even if it were run continuously, the 
device would still have a battery life greater than L. 
Once a service continues beyond the initial 
authentication, the energy signature of the service is 
captured dynamically and is validated against the 
reference signature. If the validation fails, the system 
is considered under a power attack. 

5.3. Energy Signature Monitor  
If an attack has somehow successfully intruded the 

system (the attacker has been authenticated), the 
power-secure architecture remains vigilant by 
continuing to monitor energy consumption of the 
system to make sure it is within expected bounds of 
the application.  Benign and malignant power attacks 
would alter the dynamic energy signature of the 
particular service. We will detect such intrusions via 
dynamic validation of the dynamic energy signature 
against known energy signatures for the device and 
application, and the lifetime of the system under attack 
will be protected. The energy signature monitor relies 
of a self-contained unit for dynamically measuring the 
systems power consumption, the energy monitoring 
unit (EMU), similar to what is available via ACPI but 
with greater fidelity.  The EMU should permit the 
system to measure the energy consumed of each 
process.  The energy measurements made by the EMU 
will be compared to a set of reference energy 
signatures to detect whether the system is under attack.  
For most programs, it will be difficult (if not 
impossible) to generate a signature for every possible 
valid execution of the program. Even if it were 
possible to generate signatures for every possible valid 
execution, storage constraints of mobile computing 
devices will limit the number that can be carried on the 
device. Thus an open issue for this signature method is 
finding a concise representation of the signatures that 
provides an adequate level of accuracy.   

One concern that we have for the EMU is that the 
power measurements it makes available would allow 
an attacker to more easily tune a sleep deprivation 
attack.  Thus accessing the EMU must be a privileged 
operation. Another concern is that, similar to multi-
layer authentication, checking the signatures must be a 
lightweight process and cannot consume too much 
energy. Consequently, we suspect there will be a 
trade-off between the accuracy of the method used to 
check the signatures (i.e., the rate of false positives 
and negatives) and the amount of energy and storage it 

requires.  One way to reduce the energy cost of 
checking signatures is to use some method of intrusion 
detection that looks for sleep deprivation attacks and 
only check signatures when an attack is suspected.  
For example, signatures could be checked when the 
power consumption becomes large enough that the 
battery life will be less than the guaranteed minimum. 
Then signature checking will only occur when the 
predicted battery life is suspiciously short. We are 
investigating methods of intrusion detection that are 
appropriate for sleep deprivation attacks, while 
meeting the power, performance, and storage 
constraints of battery-powered systems. 

6. Conclusions 
This paper has described sleep deprivation attacks 

on general-purpose battery-powered computing 
devices. These power-related security attacks render a 
device inoperable by draining the battery more quickly 
than it would be under normal usage. If an attacker can 
prevent the device from entering low power modes by 
keeping it active, the battery life can be drastically 
shortened. We have defined three main methods for an 
attacker to drain the battery: (1) Service request 
attacks, where repeated requests are made to the 
victim for services, typically over a network--even if 
the service is not provided the victim must expend 
energy deciding whether or not to honor the request; 
(2) benign power attacks, where a the victim is made 
to execute a valid but energy-hungry task repeatedly, 
and (3) malignant power attacks, where the attacker 
modifies an executable to make it consume more 
energy than it would otherwise.  Our initial results 
show that denial-of-service attacks prevent the 
Thinkpad and PDA from entering low-power 
sleep/idle modes, while at the same time consuming 
significant additional power.  As far as we know, these 
are the first implementations of sleep deprivation 
attacks to be reported. 

One very interesting result is that the potential 
impact of service request attacks on general purpose 
systems is determined by the computational 
requirements of the requested service, not by the 
power of the wireless communication subsystem, 
unlike wireless sensor networks. When the additional 
power consumed by actively transmitting/receiving on 
the wireless network interface is small, the service 
request attacks will greatly increase power 
consumption only when the requested service has a 
large computational requirement.  

Our results also demonstrated that the cache 
performance of an attack alters the power profile.  
Thus a smart attacker will create attacks that can tune 
themselves to increase their power consumption on a 
target system. System designers should be aware that 
information provided by the power management 



subsystem with the intent of increasing battery life 
could be used by an attacker to tune a sleep 
deprivation attack.  For example, our self-tuning 
malignant power attack uses battery information 
provided by ACPI to tune itself.  ACPI also provides 
information about other subsystems, their power 
management states, and the power consumed in each 
state, which could be used by an attacker to choose 
subsystems that will give the largest increase in power 
if they were kept in an active state. If sleep deprivation 
attacks proliferate then access to the power 
management subsystem must be privileged. 

The paper also presented our proposed power-
secure architecture.  The architecture will defend 
against these attacks by guaranteeing a minimum 
battery life even in the face of the attack. Multi-layer 
authentication and energy signature monitor form the 
basic pillars for the architecture.  The multi-layer 
authentication is designed to prevent energy loss from 
service request attacks by making sure that all services 
rendered consume less than a certain amount of 
energy. Additional resources are committed only to 
those requesters who have obtained further levels of 
trust. The energy signature monitor is designed to 
catch those intrusions that have entered the system to 
execute an energy-hungry application or service. An 
initial implementation of the power-secure architecture 
is underway. Our future work includes fully 
implementing the architecture and testing it on a 
variety of systems.  
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