
Denial-of-Service Attacks on Battery-powered Mobile Computers

Thomas Martin, Michael Hsiao, Dong Ha, Jayan Krishnaswami
Virginia Tech, Dept. of ECE

{tlmartin, mhsiao, ha, jkrishna}@vt.edu

Abstract

Sleep deprivation attacks are a form of denial of
service attack whereby an attacker renders a
pervasive computing device inoperable by draining the
battery more quickly than it would be drained under
normal usage. We describe three main methods for an
attacker to drain the battery: (1) Service request
power attacks, where repeated requests are made to
the victim for services, typically over a network--even
if the service is not provided the victim must expend
energy deciding whether or not to honor the request;
(2) benign power attacks, where the victim is made to
execute a valid but energy-hungry task repeatedly, and
(3) malignant power attacks, where the attacker
modifies or creates an executable to make the system
consume more energy than it would otherwise. Our
initial results demonstrate the increased power
consumption due to these attacks, which we believe
are the first real examples of these attacks to appear in
the literature. We also propose a power-secure
architecture to thwart these power attacks by
employing multi-level authentication and energy
signatures.

1. Introduction
The ongoing proliferation of battery-powered

computing devices has created a new type of “denial
of service” attack: If an attacker can drain a device’s
battery, for example, by having it repeatedly execute
an energy-hungry program, the device will be rendered
inoperable, which Stajano and Anderson have called a
sleep deprivation torture attack, or battery exhaustion
[18]. Unlike other denial of service attacks where the
attacker must keep up the attack in order to continue to
deny the service, the attacker can quit attacking a
battery-powered device once she has fully discharged
the battery, and can then move on to attack another
device. Just as the advent of computer networks
enabled an increase in the number of computer
viruses, Trojan horses, and other computer security
breaches, the rising availability and increasing
dependence on pervasive computing devices will lead
to the creation and spread of sleep deprivation torture
attacks. The battery in a pervasive computing device is
thus a point of vulnerability and must be protected.

Pervasive computing devices, e.g. notebook
computers, personal digital assistants, and wearable
computers, are intrinsic to making information
available anywhere at anytime. There is an increasing
reliance on such devices in education, business,
emergency response, defense, and healthcare [11], and
with increasing reliance comes an increasing need for
security [14][23]. While much is known about how to
protect pervasive computing devices from attacks on
vulnerabilities they share with other types of
computing systems, little is known about how to
protect them from power-based attacks. Sleep
deprivation attacks are not presently widespread, but
the potential exists for them to become more common.
One of the goals of this paper is to raise the awareness
of the pervasive computing community, so that the
mechanisms for preventing and mitigating these
attacks can be put in place before they become
widespread. The attacks that we present here, if not
thwarted, could potentially keep pervasive computing
from being adopted by a wider group of users.

Sleep deprivation attacks render a device inoperable
by draining the battery more quickly than it would be
under normal usage. In a typical mobile computer, the
battery is expected to give a certain battery life under a
set of usage conditions where the user is actively using
the device for a small fraction of the time, and the
device is idle the rest of the time. When the device is
idle, power management software puts the device into
low power standby and sleep modes, extending the
device’s battery life. If an attacker can prevent the
device from entering low power modes by keeping it
active, the battery life can be drastically shortened.
This paper defines three main methods for an attacker
to drain the battery: (1) Service request power attacks,
where repeated requests are made to the victim for
services, typically over a network--even if the service
is not provided the victim must expend energy
deciding whether or not to honor the request; (2)
benign power attacks, where the victim is made to
execute a valid but energy-hungry task repeatedly, and
(3) malignant power attacks, where the attacker
modifies or creates an executable to make the system
consume more energy than it would otherwise. Our
initial results demonstrate the increased power
consumption due to these attacks, which we believe

are the first real examples of these attacks on general
purpose mobile computers in the literature. Our results
show a baseline of what the effect of the attacks may
be and the forms that they may take. We expect that
the sophistication and impact of these attacks may
increase over time, as has happened with conventional
worms and viruses, especially if the methods for
mitigating the sleep deprivation attacks are added
piecemeal to pervasive systems rather than designed in
from the beginning.

As will be described in section 3, data presented in
[5] shows that an attacker could cut the battery life of
currently available mobile computers by a factor of 30
to 280. To put these numbers in perspective, if the
expected battery life of a device is a month, an
attacker could reduce the life to between 2.5 hours and
24 hours. An attacker could thus leave the victim
without access to the device much sooner than
expected, reducing the battery life by one to two
orders of magnitude.

The remainder of this paper is organized as follows.
Section 2 describes the related work. Section 3
discusses the potential forms and impact of the sleep
deprivation attacks on general-purpose mobile
computing systems. Section 4 describes our initial
implementations of each form of the attack, our
experimental setup, and our experimental results.
Section 5 proposes a power-secure architecture that
we believe will mitigate the impacts of the attacks.
While this architecture is not yet fully implemented,
we outline its major features. Section 6 provides our
conclusions and possible avenues for future
investigation.

2. Related Work
The work most closely related to this paper includes

sleep deprivation attacks on sensor networks, power
analysis of encryption devices, authentication in
distributed environments, low power software design,
and peak power estimation.

To the best of our knowledge, the first mention in
the research literature of rendering a battery-powered
device inoperable by draining its battery has been by
Stajano and Anderson [18]. There has been no
systematic study of the attack, methods for preventing
it, or implementations of it. The main interest in it has
come from the wireless sensor network community
[16]. A major difference between wireless sensor
networks and general purpose mobile computing is
that the power consumption of wireless sensors is
dominated by the RF subsystem, so the focus there has
been on limiting communication in order to thwart the
attack. In a general purpose mobile computing device,
limiting communication will not prevent all forms of
the attack. General purpose mobile computing devices
also offer a much richer set of services than wireless

sensor networks, and thus there are more forms for the
attack to take on them. Thus it is necessary to study
the attacks on mobile computers to find ways to
mitigate these other forms.

Another seemingly major difference is that wireless
sensor networks are typically unable to have their
batteries recharged or replaced, and thus the sleep
deprivation attack would appear to be more critical for
them than for mobile computers. However, in
practice, the attack on a mobile computer would
typically be just as critical in terms of denying its use.
A mobile computer subjected to a sleep deprivation
attack would likely not be able to have its battery
replaced or recharged without the user stopping his or
her current activity, finding a place to recharge the
battery (assuming the charger has been brought along
with the mobile computer), and then waiting until the
battery is recharged. For users in the field, e.g.
emergency response workers, military personnel, etc.,
recharging or replacing the battery may not be an
option, and thus the sleep-deprivation attack on mobile
computers is just as critical as it is on wireless sensor
networks. For consumer applications, if an attack
were not detected, the user would probably suspect
that the battery of the device had become defective
and was no longer able to retain any charge.

One security issue involving power that has been
widely studied is that of power analysis of encryption
devices. Differential power analysis (DPA) attacks the
key of a cryptosystem by measuring power
consumption during encryption/decryption and finding
the correlation between the power consumption and
the value of bits of the key [6][17]. DPA has been
demonstrated to reveal substantial portions of a key,
for example, 48 bits of a 56-bit DES key. However,
unlike sleep deprivation attacks, DPA is an attack on
the confidentiality of a device’s key, not the
availability of the encryption device itself.

The authentication process we envision for the
proposed power-secure architecture shares many
aspects with techniques for authentication in a
distributed environment, such as Kerberos [7] or
X.509 [4]. Kerberos depends upon the constant
availability of a centralized authentication server,
which is not applicable or desirable for the wireless
networked environment. In contrast, X.509 depends
upon cryptographically signed certificates from a
certificate authority; the authority does not need to
always be available. For battery-powered devices,
authentication based upon X.509 may be applicable if
the encryption algorithms and protocols are evaluated
for their energy usage

Research in low power design is also applicable to
the problem, particularly in estimating battery life of
mobile systems [12], measuring power consumption of
software [1][19] and in creating low power software

[13]. When services that consume too much energy
are identified, it will be desirable to reduce their power
consumption via low power compilation and source
code transformations. One major difference between
attacks on batteries and low power design has is that
the goal of low power design is typically assumed to
be to lower the energy per operation of the device,
which is a measure of both the power consumption
and the execution time of an operation. For attacks on
the battery, the attacker's goal will be to maximize
power consumption, without regard to the number of
operations that are performed in a given amount of
time.

In regard to peak (or maximum) power, if the peak
power is significantly higher than average power of
the device, the battery can be depleted at a faster rate if
the attacker can sustain the peak power consumption.
Estimation of peak and maximum power has attracted
attention in recent years [10][22], in which an attempt
to place a bound on peak power dissipation is made.
Taking the peak power further by one step, sustainable
peak power generation that attempts to find a cycle
with peak power is generated can be used to generate a
power attack to test our system [2]. New methods for
computing sustainable peak power are developed in
which automatic generation of a functional vector loop
for near-worst case power consumption is attained.
The peak power measures obtained more than 70%
tighter peak powers have been achieved [2].

3. Potential Forms and Impact of Sleep
Deprivation Attacks

We define three main forms of sleep deprivation
attacks on general purpose mobile computers: Service
request attacks, benign power attacks, and malignant
power attacks. The goal of each type of attack is to
maximize the power consumption of the target,
thereby decreasing its battery life. The attacks achieve
this by keeping the target device busy, and preventing
it from going into low power sleep modes. However,
the mechanism for each attack is different:

(1) Service request power attacks repeatedly make
otherwise valid network service requests, such
as telnet, ssh and web server requests, for the
purpose of using up the device under attack's
(DUA) battery capacity. This type of attack
keeps the DUA busy authenticating/servicing
the requests.

(2) Benign power attacks, where the DUA is made
to execute a valid but energy-hungry task
indefinitely, such as displaying a hidden
animated gif or executing a hidden Java script;
though invisible to the user, the task secretly
drains the energy source. The essential feature
of the benign power attack is that the attacker

provides data to a valid program that causes
the program to execute in such a way that it
consumes a pathological amount of power.

(3) Malignant power attacks, where the attack
maliciously penetrates the system and alters
operating system kernel or application binary
code such that more energy is needed to
execute them; the altered binaries may or may
not be functionally correct. These attacks will
thus be either viruses or Trojan horses.

In some cases, these attacks can be prevented or
detected using existing security techniques. For
example, malignant power attacks can be detected
using virus-scanning software. But in other cases, for
example, the benign power attacks, detecting the
attacks using existing techniques will be difficult.
There is a chance that the security techniques could
themselves be used to mount a sleep deprivation
attack: An attacker could send a virus that he knows
will be caught by the target system's virus-scanning
software, but the energy consumed by the virus-
scanning software may exhaust the battery if the
attacker causes it to run repeatedly.

A successful attack will maximize power
consumption while presenting to the user the
appearance that the system is behaving normally, with
the possible exception of the battery status indicator.
Side effects that one would expect to see of these
attacks if they are not implemented subtly include the
CPU fan turning on while the user is performing some
action that does not normally cause the fan to come
on, the system becoming less interactive than usual,
and the hard drive spinning up immediately after a
spin down. A successful attack will likely cause the
user to believe that the battery has become defective
and will no longer keep a charge. We outline an
architecture for detection in section 5 that we believe
will detect all three forms of power attacks, even if the
attacker is careful about not causing otherwise
suspicious side effects.

Another property of a successful attack is that it will
utilize the subsystems that have the largest difference
between idle or sleep state power consumption and
active state power consumption. In the systems we
present in Section 4, this was the CPU. Thus our
implementations of the attack tended to exercise it
heavily. For other platforms, different subsystems may
be more attractive targets.

To illustrate the potential of these attacks, assume
that the device uses power Pactive while active and
power Psleep while sleeping, that PFR = Pactive/Psleep,
and that the device has a usage duty factor of D
(fraction of time that the device is active) [5]. Then
the battery life, normalized to being asleep 100% of
the time (D=0), is equal to 1/(1-D + PFR×D). Since
PFR is much greater than 1, in order to minimize

battery life, one should increase D, increase PFR, or
both. Typically D is very small; the value reported in
[5] was 0.0035, which is equivalent to using a device
10 times a day for about 30 seconds at a time.
Reported values of PFR for a range of PDAs and
experimental mobile computers range from 30 for the
experimental platforms (Compaq Itsy and IBM Linux
Wristwatch) to 280 for the commercially available
PDAs (Psion and Palm Pilot) [5].

The aim of the attacks is to keep the device as
active as possible, to make D=1. Assuming that in
normal usage D is very small, then the battery life
when under attack will be reduced by a factor of
approximately PFR. Given the range of values for
PFR from above, an attacker could reduce the battery
life of currently available mobile computers by a
factor of 30 to 280. Our experience with various
notebook computers in the laboratory shows that the
PFR for them is much smaller, on the order of 2 to 4,
because they tend to be in the idle state rather than the
sleep state when not active. But even with these much
smaller values of PFR, the battery life would be
considerably shortened.

In some circumstances the impact of the attack may
be worse. The above analysis ignores non-ideal
capacity properties of batteries that may make the
attack even more effective, because it implicitly
assumes that battery life is inversely proportional to
the average power. In practice, the battery energy
capacity depends upon the power consumption of the
load [12][15]. As the power of the load increases, the
total energy that is delivered by the battery decreases.
Over a range of loads that can be reasonably expected
of a mobile computer, the battery capacity may vary
by nearly 30% [12]. What this means in practice is
that, if an attacker can increase the average power by a
factor of X, the battery life will be shortened by more
than a factor of approximately X1+α, where α is in the
range of 0.2 to 0.7 [9].

4. Power Attack Examples
This section gives examples of each of the three

types of power attack and includes experimental
results of each attack on PDAs and a notebook
computer. These examples are not meant to be
exhaustive, but instead are intended to demonstrate
that the attacks exist and that they have the potential to
drastically decrease the battery life. Before describing
the attacks and the experimental results in detail, we
first describe our experimental setup.

4.1. Experimental Setup
Data for the power consumption of the mobile

devices was collected using an Agilent 3458A digital
multimeter set to a sampling rate of 10,000
samples/second. The multimeter was controlled by a

computer that also stored the readings taken, using a
triggering arrangement similar to that described by
Flinn [1]. This arrangement allowed us to synchronize
measurements over several trials and average them
together.

For the measurements, we used a notebook
computer and two different PDAs for the devices
under attack. Results were measured on an IBM
Thinkpad T23 notebook, a Compaq iPAQ model 3760
PDA and a Compaq Itsy, a research prototype PDA
[21]. The IBM Thinkpad has a 866MHz Pentium III
CPU, 128 MB of memory and dual boots the Windows
2000 and Linux operating systems. The iPAQ is a
3675 model, with 64 MB of memory, running
Windows CE version 3.0. The Itsy is a version 1.5,
with a 206 MHz StrongARM processor and 64 MB of
memory, running Linux. Both the IBM Thinkpad and
the iPAQ had PCMCIA slots, and we used an Orinoco
Silver 802.11b wireless network card to provide a
network connection to them for the service request
attack results.

For the IBM Thinkpad and the iPAQ, the screen
brightness was a large factor in the power
consumption; to provide consistent behavior from one
trial to another, screen brightness was set to its
minimum value during all measurements. We also
ensured that power management settings were the
same for each trial.

In order to be able to take the readings over
multiple runs without having synchronization
problems, the multimeter was made to start taking
readings only after it received an external trigger. A
program was written that ‘sleeps’ for a fixed amount
of time before giving out a pulse on a port that, in turn,
was connected to the multimeter’s external trigger
input. This helped to begin the applications on the
systems within a couple of milliseconds of each other
over many runs. The plots in this section show the
power as a running average of 100 samples (10 ms) in
order to filter out high frequency noise that makes it
difficult to see the general trends.

4.2. Description of the attack implementations
We now describe some specific attacks that we

have implemented, attacks that can be used on a
variety of platforms. As we said earlier, these
examples are not meant to be exhaustive, but are
meant to demonstrate the existence of the attacks and
to give some indication of their potential impact.
Furthermore, we are not claiming that these are the
most potent forms of the attack. While the examples
we present here are straightforward and easy to mount,
we suspect that there are more subtle vulnerabilities
that can be exploited. For example, all of our attacks
change the state of the system from what would
generally be considered an idle state, where the device

appears to be on but is not actively performing any
activity, to an active state. More powerful forms of
the attack would have the device appear to be in a
standby state (which typically consumes much less
power than being in the idle state) while in reality
being active, e.g. having the screen off as if in standby
but having a thread that is being executed on the CPU.
The important point is that these are the first
demonstrations of sleep deprivation attacks on general
purpose mobile computers to appear in the literature.

For the service request attack, we used repeated
requests to an SSH server. The requests were made
with a correct username but a wrong password. For
the benign attack, we created an animated GIF that
consisted of the same image shown repeatedly; to the
eye it appeared to be unanimated. To provide a
comparison point, we also measured the power
consumption of an unanimated version of the same
image.

Finally, the malignant attack consisted of a program
that repeatedly wrote and read an array. The length of
the array was varied dynamically such that, initially,
most of the array accesses resulted in cache hits, but as
the array size was increased, most of the array
accesses resulted in cache misses. The program kept
track of the amount of time to access the entire array;
when the bandwidth dropped the program could tell
when the array no longer fit into the cache . As
section 4.3 will show, in some systems cache misses
consume more power, while in other systems cache
hits consume more power. Thus an attacker using this
attack will likely tune it to the particular target system.

We tried all three attacks on both the IBM Thinkpad
and the iPAQ, but because of the network and screen
limitations of the Itsy we did not try the network
service request or the benign power attack on it. For
the Itsy, we tried only the malignant attack; due to
some interesting effects of the CPU speed on power

Figure 1. Requests made to SSH server on the
Thinkpad with wrong password.

consumption, and because the Itsy was designed to
allow power to be measured to both the CPU core as
well as the entire system, we include the Itsy results
for this attack because it allowed us to test our
hypothesis about the CPU speed and its impact on the
relative power cost of cache hits and cache misses.

4.3. Experimental Results
Service request attack: Figure 1 shows the results of

the service request attack on the IBM Thinkpad
running an SSH server. The Y-axis denotes the power
dissipated as a function of time (X-axis). As shown in
Figure 1, the idle power (first five seconds) of the
Thinkpad is approximately 10W. When the repeated
denied service requests begin, the results show that the
average power consumption increases by
approximately 15%. Figure 2 shows the results of the
same attack on the iPAQ running the SSH server.
(Please note the difference in scale of the y-axis
between Figures 1 and 2.) Here the results are more
dramatic, with about a 30% increase in average power
consumption while the failed logons are taking place.

Our initial form of the attack on the iPAQ used an
FTP server but had relatively little power increase,
about 5%. This was much lower than we initially
expected, because on the iPAQ the 802.11b card is a
large fraction of the overall system power. Given the
emphasis on this attack in the sensor network area, we
assumed that the transmit and receive power of the
802.11b card would dominate, but in fact the power
consumption of the card while maintaining the
wireless connection (approximately 1.2W) is only
slightly less than while actively transmitting and
receiving. Thus the increase in power consumption is
mainly due to the computation required by the
requested service rather than the wireless
communication, which is a major difference between
this form of the attack on a wireless sensor network. If

Figure 2. Requests made to SSH server on the
iPAQ with wrong password.

the power management of the 802.11b card were such
that there was a larger difference between maintaining
a connection and actively receiving/transmitting, then
this attack would cause a larger increase in power
consumption. These results also show that, for general
purpose systems at least, the computation required by
a network service request should be limited to mitigate
the potential for this form of the attack. In Section 5
we will address this by using multi-layer
authentication for service requests.

Benign power attack: The results of the benign
power attack on the Thinkpad are shown in Figure 3.
The animated GIF consumes about 80% more power
than a non-animated GIF (18.4W vs. 10.2W). This is
significantly higher than a non-animated image, even
though to the human eye the animated version appears
to be the same. Figure 4 shows the benign power
attack results for the iPAQ; the animated image give
consumes almost three times more power than the

unanimated image, 1.15W for the animated image vs.
0.43W for the unanimated image. (The average power
for the iPAQ is lower than in the service request attack
results because the 802.11b card was not present.)

An attacker could thus embed an animated GIF in a
web page in such a way that the user would think that
it was unanimated while causing the user's device to
consume considerably more power than if the image
were actually unanimated. The attacker does not need
to modify the target system's software or hardware
configuration in any way, nor does the attacker have to
actively make a network connection to the target.
Instead the attacker provides pathological data to the
existing software on the system such that the system
consumes more power than it would under normal
usage. This attack is probably the most difficult of the
three attacks to defend against.

Malignant power attack: Figures 5 and 6 show the
malignant power attack on the Thinkpad and the

Figure 3. Comparison of power consumption of

animated GIF and non-animated GIF on the
Thinkpad

Figure 4. Comparison of power consumption of
animated GIF and non-animated GIF on iPAQ

Figure 5. Power consumption during malignant

power attack on the Thinkpad

array fits
into cache

array too big
for cache

Figure 6. Power consumption during malignant power

attack on the iPAQ

array fits
into cache

array too big
for cache

iPAQ, respectively. For the Thinkpad, the attack
consumes 21.4W while hitting in the cache and 22.9W
while missing in the cache, more than double the idle
power of 10.2W. For the iPAQ, the attack consumes
1.10W during cache hits and 1.17W during cache
misses, about three times the idle power of 0.42W.
One feature of our implementation of the malignant
power attack is that on both the Thinkpad and the
iPAQ, cache misses consume more power.

For the Itsy, however, the situation is more
interesting, as shown in Figure 7 and Figure 8. The
Itsy research prototype has the option to allow the user
to change the CPU clock frequency. The malignant
power attack was run on the Itsy for two different
processor speeds (206 MHz and 59 MHz). At 206
MHz, a cache hit consumes about 10% more power
than a cache miss; at 59 MHz a cache miss consumes
about 10% more than a cache hit.

The plots in figures 5-8 show that if an attacker tries
to drain the battery by exploiting the cache behavior,
he must know about the particular hardware of the
target. The hardware configuration of the device
under attack determines whether a hit or a miss in the
cache consumes more power. One option is to
maintain an exhaustive database of all the devices and
their clock frequencies, which seems impractical. A
more practical option is for the attacker to get the
power information from the battery state.

We have written an initial version of a self-tuning
malignant power attack on the Thinkpad. It uses the
battery information provided by the Thinkpad's
Advanced Configuration and Power Interface (ACPI)
subsystem [3] to monitor power consumption while
the attack is underway. Once the array does not fit into
the cache, the program chooses the array size that had
the most power consumption. The power consumption
provided by ACPI battery interface is coarse; the
power is sampled about once a second. However, by
allowing each size of the array to be accessed for

Figure 7. Power consumption during malignant
power attack on the Itsy at 206 MHz

about 30 seconds at a time, we are able to get adequate
power information from the battery to distinguish
whether hitting in the cache or missing in the cache
consumes more power.

As was stated in Section 3, if the system becomes
noticeably less interactive, the user may become
suspicious. To avoid reducing the system's
interactivity, our self-tuning malignant attack runs at
the lowest priority, such that the only the idle process
has lower priority than it. Thus it will run whenever
the idle process would normally run, keeping the CPU
active, without interfering with the performance of the
user's other running programs.

5. Towards a Power-Secure Architecture
In order to guard against attacks that attempt to

quickly drain the device’s energy source, we are
currently implementing a hardware/software
architecture for thwarting sleep deprivation attacks on
general purpose mobile computing systems, which we
call a power-secure architecture. The goal of the
architecture is to provide some guaranteed fraction of
the system's expected battery life. This section gives
an overview of the architecture.

The overall power-secure architecture employs two
fundamental security features within the system:
multi-layer authentication and energy signature
monitoring. The multi-layer authentication is
designed to prevent energy loss from service request
attacks by making sure that all untrusted services
rendered consume less than a certain amount of
energy. Additional resources are committed only to
those requesters who have obtained further levels of
trust. The energy signature monitor, which requires a
self-contained unit to measure the system’s dynamic
power and a database of reference signatures for each
trusted application, is designed to catch intrusions that
have entered the system to execute an energy-hungry
application or service, either as a malignant or benign

Figure 8. Power consumption during malignant
power attack on the Itsy at 59 MHz

array fits
into cache

array too big
for cache

array too big
for cache

array fits
into cache

power attack.

5.1. Multi-layer authentication
In the event of a service request attack, repeated

requests are made by the attacker to keep the device
under attack (DUA) extremely busy. If the service
requires authentication, such as telnet/ssh, traditional
authentication approach will always perform a
database lookup to match the password with username,
thus drawing unnecessary current in the process.
Likewise, services requiring no authentication, such as
web page requests, can be used to force the DUA into
thrashing mode, feverishly responding and servicing
the requests, possibly denying regular and normal
requests in the process.

Figure 9 illustrates our authentication technique.
The energy profile of a service is generally non-linear
over the lifetime of the service as depicted in part (a)
of the figure, thus repeated executions of one small
portion of the service may consume less energy than if
the entire service was repeated continuously. For
example, if we allow the first T seconds to be executed
before any authentication, the power profile under an
attempted attack will be similar to that shown in part
(b) of the figure, where the average power
consumption is kept nearly constant. On the other
hand, if no measure is taken to prevent such attacks,
the profile would look similar to part (c) of the figure,
where repeated calls to the service drains a
substantially more energy. To find the time T at
which a service request should be authenticated, for

each service we calculate a crippling energy level.

5.2. Crippling energy level
The crippling energy level is the worst-case

repeated-access to a service that can cripple the device
in a given amount of time. This pre-determined
crippling energy, ec, for each service is computed in
the following manner. Let us assume the total energy
available for the device is E, and we would like to
have a minimum lifetime of the device to be at least L.
In order to guarantee that the device lifetime is greater
than L, we must make sure that repeated requests to a
particular service consume no more than E energy in
L. Because the energy consumption of the entire
service may be non-linear over the lifetime of the
service, servicing repeatedly a small portion of the
service may consume less energy than repeatedly
servicing the entire service. Thus, if the energy
consumption for the first T seconds is ec, then we must
ensure that E/(ec / T) >= L, or ec <= E×T/L.

One difficulty with this authentication approach is
that we must guarantee that repeated authentication
(the first initial portion of the executable) would not
reduce the lifetime of the device to be less than L.
Otherwise an attacker can exhaust the battery simply
by repeatedly forcing the authentication to occur.
Therefore, not only must this initial authentication be a
lightweight process, it must also satisfy the crippling
energy criterion. It may not be possible to have a
single, lightweight authentication that is sufficiently

Figure 9. Power profiles of a service showing the concept of the crippling energy level

difficult to defeat. Thus we may have to use multiple
layers of authentication, with services that have higher
energy requirements going through several stages of
authentication as they run, with each layer possibly
requiring more energy.

If a service can complete before it consumes the
crippling energy, then it does not need to be
authenticated: Even if it were run continuously, the
device would still have a battery life greater than L.
Once a service continues beyond the initial
authentication, the energy signature of the service is
captured dynamically and is validated against the
reference signature. If the validation fails, the system
is considered under a power attack.

5.3. Energy Signature Monitor
If an attack has somehow successfully intruded the

system (the attacker has been authenticated), the
power-secure architecture remains vigilant by
continuing to monitor energy consumption of the
system to make sure it is within expected bounds of
the application. Benign and malignant power attacks
would alter the dynamic energy signature of the
particular service. We will detect such intrusions via
dynamic validation of the dynamic energy signature
against known energy signatures for the device and
application, and the lifetime of the system under attack
will be protected. The energy signature monitor relies
of a self-contained unit for dynamically measuring the
systems power consumption, the energy monitoring
unit (EMU), similar to what is available via ACPI but
with greater fidelity. The EMU should permit the
system to measure the energy consumed of each
process. The energy measurements made by the EMU
will be compared to a set of reference energy
signatures to detect whether the system is under attack.
For most programs, it will be difficult (if not
impossible) to generate a signature for every possible
valid execution of the program. Even if it were
possible to generate signatures for every possible valid
execution, storage constraints of mobile computing
devices will limit the number that can be carried on the
device. Thus an open issue for this signature method is
finding a concise representation of the signatures that
provides an adequate level of accuracy.

One concern that we have for the EMU is that the
power measurements it makes available would allow
an attacker to more easily tune a sleep deprivation
attack. Thus accessing the EMU must be a privileged
operation. Another concern is that, similar to multi-
layer authentication, checking the signatures must be a
lightweight process and cannot consume too much
energy. Consequently, we suspect there will be a
trade-off between the accuracy of the method used to
check the signatures (i.e., the rate of false positives
and negatives) and the amount of energy and storage it

requires. One way to reduce the energy cost of
checking signatures is to use some method of intrusion
detection that looks for sleep deprivation attacks and
only check signatures when an attack is suspected.
For example, signatures could be checked when the
power consumption becomes large enough that the
battery life will be less than the guaranteed minimum.
Then signature checking will only occur when the
predicted battery life is suspiciously short. We are
investigating methods of intrusion detection that are
appropriate for sleep deprivation attacks, while
meeting the power, performance, and storage
constraints of battery-powered systems.

6. Conclusions
This paper has described sleep deprivation attacks

on general-purpose battery-powered computing
devices. These power-related security attacks render a
device inoperable by draining the battery more quickly
than it would be under normal usage. If an attacker can
prevent the device from entering low power modes by
keeping it active, the battery life can be drastically
shortened. We have defined three main methods for an
attacker to drain the battery: (1) Service request
attacks, where repeated requests are made to the
victim for services, typically over a network--even if
the service is not provided the victim must expend
energy deciding whether or not to honor the request;
(2) benign power attacks, where a the victim is made
to execute a valid but energy-hungry task repeatedly,
and (3) malignant power attacks, where the attacker
modifies an executable to make it consume more
energy than it would otherwise. Our initial results
show that denial-of-service attacks prevent the
Thinkpad and PDA from entering low-power
sleep/idle modes, while at the same time consuming
significant additional power. As far as we know, these
are the first implementations of sleep deprivation
attacks to be reported.

One very interesting result is that the potential
impact of service request attacks on general purpose
systems is determined by the computational
requirements of the requested service, not by the
power of the wireless communication subsystem,
unlike wireless sensor networks. When the additional
power consumed by actively transmitting/receiving on
the wireless network interface is small, the service
request attacks will greatly increase power
consumption only when the requested service has a
large computational requirement.

Our results also demonstrated that the cache
performance of an attack alters the power profile.
Thus a smart attacker will create attacks that can tune
themselves to increase their power consumption on a
target system. System designers should be aware that
information provided by the power management

subsystem with the intent of increasing battery life
could be used by an attacker to tune a sleep
deprivation attack. For example, our self-tuning
malignant power attack uses battery information
provided by ACPI to tune itself. ACPI also provides
information about other subsystems, their power
management states, and the power consumed in each
state, which could be used by an attacker to choose
subsystems that will give the largest increase in power
if they were kept in an active state. If sleep deprivation
attacks proliferate then access to the power
management subsystem must be privileged.

The paper also presented our proposed power-
secure architecture. The architecture will defend
against these attacks by guaranteeing a minimum
battery life even in the face of the attack. Multi-layer
authentication and energy signature monitor form the
basic pillars for the architecture. The multi-layer
authentication is designed to prevent energy loss from
service request attacks by making sure that all services
rendered consume less than a certain amount of
energy. Additional resources are committed only to
those requesters who have obtained further levels of
trust. The energy signature monitor is designed to
catch those intrusions that have entered the system to
execute an energy-hungry application or service. An
initial implementation of the power-secure architecture
is underway. Our future work includes fully
implementing the architecture and testing it on a
variety of systems.

Acknowledgement: This material is based upon
work supported by the National Science Foundation
under grant no. ANI-0219801.

References:
[1] J. Flinn, and M. Satyanarayanan, “PowerScope: A Tool
for Profiling the Energy Usage of Mobile Applications,” 2nd
IEEE Workshop on Mobile Computing Systems and
Applications, New Orleans, LA, Feb. 25-26, 1999, pp. 2-10.
[2] M. Hsiao, "Peak power estimation using genetic spot
optimization for large VLSI circuits," Proc. of the IEEE
Design, Automation, and Test in Europe Conference, Mar.,
1999, pp. 175-179.
[3] Intel Corporation, ACPI web site,
http://developer.intel.com/technology/iapc/acpi/.
[4] ITU-T Rec. X.509 (Revised), “The Directory-
Authentication framework, International Telecommunication
Union, Geneva, Switzerland, 1993.
[5] N. Kamijoh, T. Inoue, C. Olsen, M. Raghunath, and C.
Narayanaswami, “Energy trade-offs in the IBM Wristwatch
Computer,” Proceedings of the Fifth International
Symposium on Wearable Computers, October, 2001, pp.
133-140.
[6] P. Kocher, J. Jaffe, and B. Jun, "Differential Power
Analysis," Advances in Cryptology, Crytpo '99, Springer
LNCS 1666, 1999, pp. 388-397.
[7] J. Kohl, B. Neuman, and T. Ts’o, “The Evolution of the
Kerberos Authentication Service.” In Brazier, F., and

Johansen, D. Distributed Open Systems. Los Alamitos, CA:
IEEE Computer Society Press, 1994.
[8] H. Kriplani, F. Najm, P. Yang, and I. Hajj, "Resolving
signal correlations for estimating maximum currents in
CMOS combinational circuits," Proc. Design Automation
Conf., 1993, pp. 384-388.
[9] D. Linden, Handbook of Batteries, 2nd ed. New
York: McGraw-Hill, Inc. 1995.
[10] S. Manich and J. Figueras, "Maximizing the
weighted switching activity in combinational CMOS circuits
under the variable delay model," Proc. European Design and
Test Conf., 1997, pp. 597-602.
[11] T. Martin, E. Jovanov, and D. Raskovic, "Issues in
Wearable Computing for Medical Monitoring Applications:
A Case Study of a Wearable ECG Monitoring Device,"
Proceedings of the 2000 International Symposium on
Wearable Computers, Atlanta, GA, Oct. 2000, pp. 43-50.
[12] T. Martin, and D. Siewiorek, "Non-Ideal Battery
Behavior and Its Impact on Power Performance Trade-offs
in Wearable Computing," Proceedings of the 1999
International Symposium on Wearable Computers, San
Francisco, CA, October 18-19, 1999; pp. 101-106.
[13] P. Ong, and R. Yan, “Power-Conscious Software
Design--a framework for modeling software on hardware,”
Proceedings of the 1994 Symposium on Low Power
Electronics, October 1994, pp. 36-37.
[14] M. Satyanarayanan, "Pervasive computing: vision
and challenges," IEEE Personal Communications , Volume:
8 Issue: 4 , Aug. 2001, Page(s): 10 -17
[15] T. Simunic, L. Benini, L. G. de Micheli, “Energy-
efficient design of battery-powered embedded systems,”
Proceedings of the International Symposium on Low Power
Electronics and Design, Aug. 1999, pp. 212 -217.
[16] S. Slijepcevic, V. Tsiatsis, S. Zimbeck, M.B.
Srivastava, M. Potkonjak, "On Communication Security in
Wireless Ad-Hoc Sensor Networks", IEEE WETICE 2002.
[17] N. Smart, "Physical side-channel attacks on
cryptographic systems," Software Focus, 2000, vol. 1, no. 2,
pp. 6-13.
[18] F. Stajano, and R. Anderson, "The resurrecting
duckling: Security issues for adhoc wireless networks,"
Proceedings of the 7th International Workshop on Security
Protocols, Lecture Notes in Computer Science volume 1796,
Cambridge, UK, April 1999.
[19] P. Stanley-Marbell, and M. Hsiao, "Fast, flexible,
cycle-accurate energy estimation," Proceedings of the
ACM/IEEE International Symposium on Low-Power
Electronics and Design, August 2001, pp. 141-146.
[20] V. Tiwari, S. Malik, and A. Wolfe, “Compilation
Techniques for Low Energy: An Overview,” Proceedings of
the 1994 Symposium on Low Power Electronics, October
1994, pp. 38-39.
[21] M. Viredaz, The Itsy Pocket Computer Version 1.5
User's Manual, Compaq Western Research Laboratory
Technical Note TN-54.
[22] C. Wang, K. Roy, and T. Chou, "Maximum power
estimation for sequential circuits using a test generation
based technique," Proc. Custom Integrated Circuits Conf.,
1996.
[23] M. Weiser, "Some computer science issues in
ubiquitous computing," Communications of the ACM,
Volume 36, Issue 7 (July 1993).

