
Challenges: An Application Model for
Pervasive Computing

Guruduth Banavar', James Beck t, Eugene Gluzberg t,
Jonathan Munson', Jeremy Sussman*, and Deborra Zukowski t

IBM T. J. Watson Research Center
30 Saw Mill River Road
Hawthorne, NY 10532

A B S T R A C T
The way mobile computing devices and applications axe de-
veloped, deployed and used today does not meet the ex-
pectations of the user community and falls far short of the
potential for pervasive computing. This paper challenges
the mobile computing community by questioning the roles
of devices, applications, and a user's environment. A vision
of pervasive computing is described, along with attributes
of a new application model that supports this vision, and
a set of challenges that must be met in order to bring the
vision to reality.

1. I N T R O D U C T I O N
Pervasive computing is maturing ~om its origins as an aca-
demic research area to a commercial reality. This transition
has not been a smooth one and the term itself, pervasive
computing, still means different things to different people.
For some, pervasive computing is about mobile data ac-
cess and the mechanisms needed to support a community
of nomadic users. For others, the emphasis is on "smart"
or "active" spaces, context awareness, and the way people
use devices to interact with the environment. And still oth-
ers maintain a device-centric view, focusing on how best to
deploy new functions on a device, exploiting its interface
modalities for a specific task.

Pervasive computing encompasses all of these areas, but at
its core, it is about three things. First, it concerns the way
people view mobile computing devices, and use them within
their environments to perform tasks. Second, it concerns the
way applications are created and deployed to enable such
tasks to be performed. Third, it concerns the environment

* Email: {banava_v, jpmunson, j sussman}¢us, ibm. com.
tThis work was done while authors were with IBM
Research. Current email: jebeck~i~.netcom.com,
eugeneCnewyork, usa. com, deborra@zedak, com.
Pemlission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the lull citation on the first page. To copy
oth~wwise, to rcpublish, to post on selwers or to redistribute to lists,
requires prior specific permission and/or a fee.
MOBICOM 2000 Boston MA USA
Copyright ACM 2000 1-58113-197-6/00/08...$5.00

To appear in the proceedings of the Sixth Annual ACM/IEEE International
Conference on Mobile Computing and Networking (Mobicom 2000)

and how it is enhanced by the emergence and ubiquity of
new information and functionality.

Today, pervasive computing is more art than science. It
will remain this way as long as people continue to view mo-
bile computing devices as mini -desk tops , applications as pro-
grams that run on these devices, and the environment as a
vir tual space that a user enters to perform a task and leaves
when the task is finished. This paper challenges the mobile
computing community to adopt a new view of devices, ap-
plications and environment. Specifically, our vision can be
summarized in three precepts:

• A device is a portal into an appl ica t ion/data space,
n o t a repository of custom software managed by the
u s e r .

• An application is a means by which a user performs a
task, n o t a piece of software tha t is writ ten to exploit
a device's capabilities.

• The computing environment is the user's information-
enhanced physical surroundings, n o t a virtual space
that exists to store and run software.

A new application model is needed to support this vision.
This paper describes the attr ibutes of such a model.

2. T O D A Y ' S S C E N A R I O
Albert uses his PDA as the main repository for his personal
information management, or PIM, data. Yesterday morn-
ing, the batteries on his PDA died while he was walking
over to Betty 's office for a meeting. Of course, his PDA
synchronizes with his laptop, but he did not have his laptop
with him, just his mobile phone. So, he was stuck looking
at the PIM data that he stores on his phone. This infor-
mation is much less likely to be complete, since it is more
tedious to enter data on his phone. W h y can he no t run the
same program on his phone as his P D A ? Sure enough, the
number he was looking for was not there. W h y is his P I M
in fo rma t ion spread across so m a n y devices, some o f which
cannot speak to one ano ther?

When he got to Betty 's office, he was a little early. The sec-
retary gave him some new batteries for his PDA. He figured

2 6 6

he would take the opportunity to print out his daily calen-
dar. The offices are wired for a common printing service,
so this should not have been a problem. He had printed his
PIM data from his laptop many times, but the version of
this application is different on his PDA. He spent an inordi-
nate amount of time searching before he found the device's
printing capabilities. Why does the program have to be dif-
ferent on the different devices, instead of adapting itself to
the device? As it turned out, his PDA has no way to dis-
cover services, so it could not access the printer. Why can
some devices access some services, and not others?

During the meeting with Betty, Albert complained to her
about his morning experience. She showed him a new PIM
program that she uses, which looked better to him. He
would have liked to start using it immediately, but he could
not. Why not have the program live in the environment, so
that it is immediately available for use?

He got home that night, and used his laptop to upgrade his
PIM program. He saw that this program uses a web-based
location service to provide context awareness. He subscribes
to a GPS service. Wouldn't it be nice i f the context aware-
ness could be provided by any location service ?

Given his problems from earlier that day, Albert decided to
synchronize all of his PIM information. It had been a while,
since he always finds the synchronization process painfully
complex. Sure enough, there was a number which he had
updated in two different places, and he could not remember
which was correct. Why is the fact that there are multiple
copies of the information exposed to him? Needless to say,
Albert had a frustrating day!

3. A NEW APPLICATION MODEL
The scenario in the last section illustrates that there are
many things people would like to do with their mobile de-
vices that are not supported today. These problems are
not confined to today's devices or networking technology or
programming standards and APIs. Improvements in each of
these areas would surely help, but the problems are much
broader.

We believe that the problems are rooted in the notions peo-
ple have of computing devices, applications, and the envi-
ronment. As mentioned in Section 1, we believe that these
notions need to change fundamentally, and an application
model needs to emerge that supports these changed notions.

To model the applications that we are envisioning, it is nec-
essary to consider the life-cycle of an application. This life-
cycle can be divided into three parts: design-time, load-time
and run-time.

Design-time is when the developer creates, maintains and
enhances the application. At load-time, the system com-
poses, adapts and loads the application components into
an application instance on particular hardware devices. At
run-time, the end-user invokes the application and uses its
functionality. The system provides an environment in which
the application can run, and adapts the application to vari-
ations in this environment.

In this section, we present a new application model from
the perspectives of application design-time, load-time and
run-time. For each perspective, at tr ibutes of the model are
described along with a set of challenges. We show how the
attributes of the new model support the precepts "device as
portal", "application as task" and "physical surroundings as
computing environment".

3.1 Design-Time
Imagine building an application that fits the three precepts
that are the basis of this challenge paper. If "devices are
portals," then the application should not be written with a
specific device in mind. The developer should not make any
assumptions about the screen size or device capabilities, or
even that there is a screen at all (for example, an application
may be run using a voice synthesizer and a phone). The user
interface of the application must not include any information
specific to a device or set of devices. Instead, the application
front-end should be device-neutral.

If applications are to be device-neutral, then the developer
should not start with the presentation and then fill in the
underlying logic. The task logic should not be secondary
to the user interaction. The user interface definition should
not include a rigid decomposition of the interaction. Rather,
the decomposition of the user interaction should be driven
by the definition and structure of the tasks. The application
description should capture the purpose of the user interac-
tion at a high level.

If the environment of an application is to be context aware,
then the developer should not make assumptions about the
services that are available. Services that the application
needs in order to run should not be explicitly named, but
rather specified in an abstract manner. Furthermore, there
may be services available to the application at run-t ime that
are not known or available to the developer at design-time,
but may be useful for the task. Applications should be able
to use such services. When appropriate, the designer can
abstractly specify optional services that, if present at run-
time, enhance the application.

3.1.1 P r o g r a m m i n g M o d e l .
As described above, the programming model must allow for
the description of abstract user interfaces and abstract ser-
vices. The structure of the program should be described
in terms of tasks and subtasks. The granularity at which
these tasks are presented to the user is a load-time issue,
and therefore the relationship among the tasks must be rich
enough that the user interface can be actualized at the var-
ious granularities. We call this relationship navigation, as it
specifies how the user will navigate the sub-tasks that make
up the application. The challenges for this programming
model are:

• Identifying abstract interaction elements. These ab-
stract interaction elements must capture user intent,
not device mechanism. That is, base elements of user
interaction must abstract away the differences in the
devices. For example, an application running on a de-
vice with a GUI may offer a but ton for the user to

267

perform some action; on a voice-activated device the
same action may be performed via a spoken command.

• Specifying an abstract service description language.
Application logic may use existing services or infras-
tructure, as well as service instances unanticipated by
the designer. A means is needed to express the ex~
pected function of a service, allowing for different ser-
vices to provide this function when the application is
running. This must allow for services to be declared
optional as well.

In the scenario above, Albert 's PIM, instead of having
a location service built into it, would specify a require-
ment for a location service, using a abstract service-
description language. This requirement could be satis-
fied by any location service instance in Albert 's current
environment.

• Creating a task-based model for program structure.
The application should be delineated into tasks and
subtasks. A task includes the abstract interaction and
the application logic, including the use of the services.
The structure is used by the system to generate device
specific "presentation units"; e.g., screens.

For example, in a PIM calendaring application, user
authentication is one task, browsing the appointments
for a day is another task, and entering a new appoint-
ment is another task. On large-screen devices, the
browsing and appointment-entry tasks may be pre-
sented on the same screen, whereas on small-screen de-
vices, these tasks may be presented on separate screens.

t Creating a navigation model. The navigation speci-
fies what causes a task to begin and end (e.g., a user
action), and what tasks precede and follow it. This
information is complementary to the task structure,
and is used by the system to automate the flow of the
"presentation units" when the application is running.

3.1.2 Development Methodology
The purpose of a development methodology is to take the
developer through a step-by-step process of realizing the ap-
plication from a set of requirements. An ideal methodology
for building an application is to focus on the user task, rather
than the user's interaction with an interface on a specific
device in a specific environment. This methodology would
allow a programmer to build an application by answering
questions such as:

• What task does the user want to accomplish? If the
task is a composite of many subtasks, how are these
defined to assist the user in his/her overall task?

• What is the "flow" through the tasks? How does each
task begin? How does it end? How does one subtask
initiate another in a dynamic framework?

• What is the user interaction for each task? What user
actions are needed to perform the task? How are user
actions a reflection of user intent?

• What information does the user need to perform the
task? Where does this information come from?

• What logic does the system perform for each (sub)task?
Is it possible for the (sub)task logic to adapt itself to
a given environment?

By answering these questions, the programmer will have
specified an application at a high level of abstraction. The
concrete results of these questions make up the implemen-
tation of the application. Given the programming model
explained above, the implementation will be made up of a
task structure annotated with navigation flow, an abstract
user interface for each task, and scripting logic that details
the task function.

The major challenge here is to build a development environ-
ment that supports the above methodology. This methodol-
ogy is not captured by current programming tools. Certain
parts of the methodology, such as navigational flow, may
lend themselves to visual interfaces, whereas others such as
scripting logic may not.

3.2 Load-Time
An application model derived from the basis of the three
precepts requires a more dynamic load-time approach than
is traditionally supported. To realize the concept of "device
as portal," devices must dynamically discover what applica-
tions are available, and the system must adapt the applica-
tions to the device resources available. An application must
be specified in terms of its requirements, the device must be
described in terms of its capabilities, and some mediating
algorithm must be used to negotiate a match between these
competing constraints.

To realize the concepts of "application as task" and "phys-
ical surroundings as computing environment", the system
must be dynamic at load-time. That is, the tasks that a user
wishes to perform may depend on the physical surroundings.
Such tasks are enabled by contextual services. The system
must, therefore, be able to discover and compose the services
that are available in the physical environment, in order to
perform desired tasks. This is in contrast to today's model,
where applications are loaded onto a device manually from
a CD or other storage medium, and managed by the user
rather than the system.

3.2.1 Dynamic Discovery
Applications and services live in the surrounding physical
distributed environment. Discovery mechanisms allow a mo-
bile device to dynamically identify and enumerate the ap-
plications and services in its local vicinity.

The major challenge posed by dynamic discovery is the defi-
nition of a service adaptation layer. A standard definition is
needed, to both hide the differences between heterogeneous
service frameworks and to maximize the use of legacy code.

In our scenario, dynamic discovery is needed both for Al-
bert to print his schedule in Betty's envi ronment- -h is PDA
should 'discover' her office's printing service--and for his
PDA to switch from one location service to another.

268

3.2.2 Requirements and Capability Negotiation
At load-time, a device needs to negotiate with a server that
hosts applications and services for several reasons. First, the
device may not have all of the resources needed to run some
of the applications and services. The set of available soft-
ware needs to be pruned so that only the hostable functions
are presented to the user. Second, application performance
is a concern, so it may be desirable to split the execution
burden between the device and available servers. This split,
which we call apportioning, uses information about the cur-
rently available resources and the resource demands of the
application. Some of the challenges related to negotiation
are:

Modeling device characteristics and application re-
quirements. The characteristics that axe relevant for
differentiating between devices must be codified, and a
metric for each of these characteristics must be devel-
oped. The application requirements must be specified
in the same terms.

Developing negotiation protocols. Such protocols are
necessary for a device to ascertain what subset of appli-
cations and services can be hosted within the bounds
of its resource limitations.

Incorporating fast and efficient apportioning algo-
rithms. Loading is not necessarily a one-time function.
Instead, the load-time mechanisms may be re-invoked
when changes in the device or physical environment
warrant re-apportioning.

3.2.3 Presentation Selection, Adaptation and Com-
position

A good user interface must exhibit qualities such as con-
sistency and style, which are difficult to quantify and syn-
thesize. Indeed these qualities are subject to human taste.
These qualities are embodied differently on devices with dif-
ferent interface modalities and form factors (e.g., a graphical
input device versus one with a speech interface). Thus, it
may be desirable to have multiple abstract representations of
the application interface, one for each combination of inter-
face modality and form factor. These will most likely need
to be generated by human designers, perhaps through semi-
automated tools. The challenges for the load-time system
a~e:

• The system needs to support dynamic selection of an
appropriate application interface from a set of avail-
able interfaces, based on the device's resources and
form-factor. The presentation selected in this man-
ner will be specific to an interface modality and form
factor. Further adaptation may be necessary for the
characteristics of a particular device.

• The system needs to seamlessly integrate the appli-
cations and services found in the environment. This
involves composing the functionality (e.g., a discov-
ered map application should be able to use a discov-
ered GPS service) as well as the user interface (e.g.,
if a service is discovered for controlling a VCR, the
interface needs to be integrated and displayed along

with the interfaces of other discovered services). The
composition is subject to the constraints and resource
limitations of the device and the composition restric-
tions of the discovered entities.

In the scenario above, Albert wanted the same PIM appli-
cation on his cell phone as the one on his P D A - - n o t two
different PIM applications accessing the same data. For ex-
ample, a PIM application may offer the function of querying
for an individual's manager or other members of the individ-
ual's work group. This function should be available whether
the PIM's interface is presented on Albert 's PDA or his cell
phone--appropriately adapted to the device's capabilities.

3.3 Run-Time
To realize the precept "device as portal," the run-t ime must
monitor the resources for the currently active portal, or por-
tal set, and appropriately adapt the application to those re-
sources. In addition, the run-time must respond to changes
initiated by the user. For example, the user may choose a
different set of portal devices.

To realize "application as task," the run-t ime must allow a
user to initiate and perform a task in an uninterrupted man-
ner, despite changes in the environment and portal devices.
The run-time should support handoff of task context from
one environment (e.g., office) to another (e.g., car), possi-
bly through a disconnected state. The key to supporting a
task-oriented application is that a user's access to the task
be continuous.

To realize "physical surroundings as computing environ-
ment," the run-time must be able to take advantage of
services provided by the environment and the physical re-
sources available within it. The run-t ime must handle un-
expected failures, such as exhausting batteries or a service
crash. Existing failure detection and recovery mechanisms
may need to be re-examined for their applicability in this
new paradigm.

3.3.1 Monitoring and Redistribution
The application model proposed in this paper requires the
run-time to detect changes in the resources of any portal
device or environment hosts that participate in application
execution. Resource changes include changes in available
network bandwidth, introduction of new devices into the
environment, introduction of new users and/or applications,
etc. In response to detected changes, the run-t ime must
initiate a reapportionment and/or relocation of application
components. The challenges introduced by this monitoring
and redistribution include:

• Non-obtrusive re-apportioning. Resource changes may
impact the user's interaction with the application.
However, some changes may be transient and unseen
by the user. Transient resource changes should be rec-
ognized as such and should not impact the application.
When changes are significant and long-lived, the ap-
plication should be automatically re-apportioned, with
minimal impact on the user.

269

® User initiated re-apportioning. The user may initiate
re-apportionment of the application. Reasons for re-
apportionment may range from anticipated change in
the connectivity of devices to a mobile user entering
the proximity of new devices. In the latter case, the
user should be given a choice of whether to use the
new devices or not.

3.3.2 Disconnection
One of the resources that must be considered when mak-
ing apportionment decisions is the communication network.
If the network connection between client and server is de-
tected to degrade via run-time monitoring, the apportioner
may react by migrating code from the server to the client to
reduce the application's demand for communication. In this
way, a running application can react to dynamic changes in
the quality of the network connection.

For some applications and devices, it may be feasible to
migrate the entire application to the client in order to ac-
commodate brief, sporadic network disconnections. How-
ever, this approach is not viable for devices with limited
resources, or for sudden, unanticipated network disconnec-
tions. Because of this, explicit support for disconnected op-
eration needs to be added to the model. In other words, the
model needs to be augmented in order to bridge the desire
of using a device (along with its accompanying resource lim-
itations) as a portal while minimizing the impact of network
disconnections.

The major challenge in this area is automating disconnec-
tion and reconnection as much as possible. The run-t ime
should prepare for disconnection without a user's interven-
tion whenever possible (e.g., automatic migration as de-
scribed above). For those scenarios where user intervention
is needed, there should be a natural way for a user to pre-
pare for disconnection, minimizing overall task disruption
(e.g., hoarding, as in [14]). While disconnected, a frame-
work should be provided to automate tasks such as queuing
network requests. A user should be able to reconnect to
an application within the user's current environment. Re-
connection in both the original and transitory environments
should be supported.

3.3.3 Failure Detection and Recovery
Many existing failure detection and recovery techniques may
be applicable to pervasive environments. However, they may
need to be modified to better serve the particular require-
ments of these environments. Some of the challenges here
include:

• Adapting checkpointing strategies. In the application
model discussed here, the device is a user's portal to
an application that runs in an environment. This is a
model previously unexamined by traditional fault tol-
erance research. Requirements on the type and tim-
ing of checkpointing may be different from the current
state of the art.

• Understanding disconnection. The distinction be-
tween failure and disconnection is often blurred in con-
ventional systems. In this application model, the dis-
t inction is important. Disconnections should not be

treated as failures, as they axe part of the expected
specification of the environment.

4. A GLIMPSE OF TOMORROW
Consider the scenario of Section 2, bu t within the new en-
vironment of tomorrow presented in this paper. At design-
time, tomorrow's developer would realize that PIM infor-
mation management is separate from the PIM front-end,
and would therefore create a service for information man-
agement. This would allow the user to have a single PIM
service which is part of the environment, immediately elimi-
nating the synchronization problem. When the user updates
a phone number, that phone number is the same regardless
of the device through which it is accessed.

The application is no longer thought of as a selling tool for
a device. Instead, the application is built to be run on any
device. Therefore a single, consistent, view of the task of
accessing personal data is supported by all devices.

Tomorrow's developer would also realize that part of the
task of accessing personal information might be to get a
hard copy. Because the printer is als0 seen as a service,
run-time discovery of the printer is easily enabled. If the
personal data of different people is linked on the network,
then that information is available to all of the authorized
devices in the environment. Similarly, the map program
which is linked to the PIM program (to provide context
awareness of schedules) is described in an abstract manner,
and therefore the conversion from the web-based location
service to the GPS-based location service is t ransparent to
the user.

Finally, because the PIM program is managed by the envi-
ronment, if the user "finds" a new, improved version, he/she
can easily update the application on any device without has-
sle or delay. From that point on, this device can use the
updated application. Indeed, the concept of "upgrading"
software may quickly become anachronistic!

5. RELATED WORK
The model proposed in Section 3 is not as revolutionary
as it might at first appear. Its roots can_ be found in sev-
eral mature technologies. We believe that there is a natural
evolutionary path to realizing this model. Indeed, parts of
this model are being realizing in current work in pervasive
computing.

In this section, we present some existing technologies that
provide the underpinnings of the application model. We also
present related pervasive computing efforts. Both common
and missing elements of each technology will be discussed in
relation to the proposed model.

5.1 Foundation Technologies
5.1.1 User-Interface Management Systems (U/MS)
UIMS efforts identified the need to divorce the user inter-
face from the rest of the application logic. Examples include
the work reported in [21] and the UIML System at Virginia
Tech [1]. In these systems interaction front-ends axe tai-
lored to allow users to perform tasks as best supported by
the devices. The application model proposed in this paper

270

expands this goal beyond the UI, to handle the heterogeneity
of other device capabilities such as compute power, network
bandwidth, and available services.

5.1.2 Client-Server Computing Model
The client-server model was introduced as a way to share
applications and data within an organization. Applications
were generally developed for a specific set of platforms, but
they were divided to better accommodate resource consump-
tion. Those parts of the application that were best sup-
ported by centralized servers (e.g., data access and mem-
ory/compute intensive portions) were included in the server
piece of the application. Those that more closely interacted
with users were included in the client piece. Standard pro-
tocols, such as sockets and RPC [19], were developed for
communication among the pieces.

The client/server division is often statically decided at de-
sign time. Such a division may not yield the best per-
formance over the full range of network conditions or the
full range of client devices, which may vary in processing
power. The client is typically assumed to be constantly con-
nected to the server, especially for the '%bin-client" varia-
tion of the model. Thus, in a mobile environment, the model
must be enhanced to accommodate sporadic disconnections,
and caching is needed to buffer this effect from applications
(e.g. [14]). Fhrthermore, the model supports heterogenons
platforms, especially by the acceptance of the standard pro-
tocols. However, the application must be recoded to each
platform, making it extremely costly and complex to develop
and maintain the application code base.

5.1.3 Java TM Computing Model
The Java computing environment [3] alleviates the re-coding
problem described above, in that iS enables device-indepen-
dent code that can be shared across platforms. Applica-
tions are written to a common Java platform consisting of a
Java Virtual Machine (JVM) and a set of standard libraries.
However, some devices are not able to support this standard
platform. While there are some efforts to define Java sub-
sets, this reduces the platform independence of Java.

Another problem is that Java uses a least-common-denomin-
ator approach for user interfaces. The toolkits Java provides
for building interfaces, such as AWT [22] and Swing [8],
assume user interface elements that are common to all
currently supported platforms. This leads to a less than
ideal environment for creating high-quality user interfaces,
adapted to the capabilities of individual devices. That is,
such interfaces cannot recognize and utilize device-specific
resources available on some devices, such as a scroll wheel
or hard buttons. Additionally, Java widgets contain pre-
sentation information and maintain assumptions about the
underlying structure of the user interface. Because of this,
user interfaces written in Java are not portable across de-
vices with different form factors, not to mention interface
modalities. Consequently, this approach is not suitable for
the type of device-specific rendering described in Section 3.

5.1.4 Web Technologies
The World Wide Web has moved applications away from
generalized GUIs towards a more information based inter-
face. Users browse global (virtual) information. They are

able to initiate server actions. These interactions are en-
abled by the use of a browser model that provides a con-
sistent and uniform user experience across heterogeneous
clients. However, much like Java, information on the web is
authored for presentation on specific platforms, and usually
cannot take advantage of the resources available on different
devices.

Though the web model offers promise for pervasive appli-
cations, it needs to be augmented to address new concepts,
such as context-awareness and intermittent access. More
complex server actions need to be supported - users need
not only to initiate server actions but to respond to "un-
expected" server information (called push services). Web-
based "applications" are evolving from browsable content to
interactive applications with broader user interactions via
graphical widgets. To enable such user interactions, tech-
nologies such as Java applets [12] and JavaScript [10] have
been added to the web model. While such technologies do
expand the capabilities of the browser, in some regards they
are a step backward. For instance, JavaScript is not device
independent, violating the reason for using a web browser
in the first place.

5.1.5 Service Technologies
The emergence of distributed object models within the
confines of the client/server computing model (e.g., COR-
BA [17], DCOM [16] and Java's Remote Method Invocation
(RMI) [20]) set the stage for service frameworks and re-
lated discovery protocols. The subsequent introduction of
service frameworks such as SLP [11] and Berkeley's Ninja
project [6] are extending the role of the wired Internet and
are enabling the discovery and use of functionality based on
context. These approaches allow a software service to be
discovered dynamically based on attributes supplied by the
client.

The emergence of Sun's Jini technology [4] has enhanced
the concept of service frameworks. Jini provides a common
framework for registering available services and answering
client look-up requests. The combination of downloadable
Java code and Java's RMI model allows a discovered service
to be loaded dynamically and then executed either locally on
the client, on a service provider, or any combination of the
two. However, Jini relies on the use of a central server which
acts as a broker; it registers services on behalf of service
providers and answers look-up requests on behalf of clients.
Because of this, Jini requires a connected network.

More recently, service frameworks have been introduced for
use over small proximity wireless networks, such as SDP
over Bluetooth [13] and the MOCA service framework [5]
for ad-hoc networks. The aim of these approaches is to pro-
vide transient access to context-sensitive information and
functions, as well as gateway access to the larger context
of the wired Internet. Consequently, these approaches al-
low a mobile device to dynamically discover and adapt its
functionality to changes in the user's environment. These
approaches support the application model of this paper.

5.2 On-Going Pervasive efforts
Perhaps the seminal project in ubiquitous computing was
the ParcTab [2, 15] effort at Xerox PARC. The roots of

271

the application model described in Section 3 can be found
there. In the ParcTab project, much attention was given to
an application traveling with the user, and being accessible
from mobile devices. This is an example of devices acting
as portals into an information space and lends credence to
the proposed vision of pervasive computing.

Unfortunately the ParcTab project ended before it could re-
alize its potential. At that time, applications were often
custom coded, and the project focused on the utility of per-
vasive applications rather than application development and
an accompanying application model.

Recently, other efforts have begun under the designation
"Invisible Computing." They appear to pick up where the
ParcTab effort left off. These approaches are, by and large,
in harmony with the application model described here. Two
sample projects, Portolano [9] and Oxygen [7] are discussed
below.

5.2.1 Portolano
The Portolano Project at the University of Washington fo-
cuses on three main areas: Infrastructure, Distributed Ser-
vices and User Interfaces. Portolano addresses a particular
research area, that of data-centrie routing. Such routing
facilitates automatic data migration among applications on
behalf of a user. Data becomes "smart", and serves as an
interaction mechanism within the environment.

Portolano's view of horizontal integration is synonymous
with our view of composition that we presented in Sec-
tion 3.2. Though Portolano proposes an infrastructure based
on mobile agents that may appear to differ from our model,
agents are an implementation option of our model. That is,
agents interact with an application and the user, and appli-
cations must be developed to utilize the agents. The service
deployment model of Portolano is similar to our view of how
applications and services are deployed into an environment.

The largest apparent divergence between Portolano and our
model concerns the role of user interfaces. Portolano em-
phasizes invisible, intent-based computing. The intentions
of the user are to be inferred via their actions in the environ-
ment and via their interactions with everyday objects. De-
vices are still portals into the environment. However, their
tasks are implicitly defined. Our model allows the devices
to explicitly run tasks. In either case, the portals capture
user input, and reflect that input to the application.

5.2.2 Oxygen
Oxygen is another approach to Invisible Computing, being
pursued by MIT. The emphasis is on understanding what
turns an otherwise dormant environment into an empowered
one. Users of an empowered environment shift much of the
burden of their tasks to the environment.

The Oxygen project is focusing on eight, environment-
enablement technologies. The first is a new mobile de-
vice, the H21, which relies on software to automatically de-
tect and re-configure itself as a cell phone, pager, network
adapter or other type of supported communication device.
The H21 is a good example of a mobile device that acts as
a portal.

The second and third technologies axe the E21, an embed-
ded computing device used to distribute computing nodes
throughout the environment, and N21, network technology
needed to allow H21s and E21s to interact. These provide
some of the load- and run-time requirements described in
Section 3.2.

The final five technologies underlying Oxygen are all aimed
at improving the user experience: speech, intelligent knowl-
edge access, collaboration, automation of everyday tasks,
and adaptation of machines to the user's needs. Inherent in
these technologies is the belief that shrink-wrapped software
will disappear as an application delivery mechanism. More
dynamic mechanisms will be used instead. This reflects the
load-time attributes described in Section 3.2.

The technologies underlying Oxygen are complementary to
the application model described in Section 3. Our model
also specifies design-time infrastructure, which would enable
the development of applications for use in conjunction with
Oxygen.

6. RESEARCH PLAN
The PIMA project at the IBM T.J. Watson Research Cen-
ter is taking an incremental, evolutionary approach to im-
plementing the application model described in Section 3.
PIMA is progressing along a number of concurrent research
thrusts. Each thrust is rooted in existing technology, and is
gradually introducing new functionality. In this section, we
describe our research plan.

Our research is based on a number of assumptions. One
assumption is that an underlying services-based distributed
architecture is a part of interactive environments. Another
assumption is that although certain devices may be best
suited for certain tasks, users will interact with applications
and services via whatever devices are handy at a given time.
The emphasis is on task enablement, rather than support for
device-specific applications such as high-end word processors
or games.

We describe below each of our concurrent research thrusts
in three steps: the current status, the next steps, and the
eventual goal. '

• Design-time Environment: Currently, the developer
uses a programming model to statically specify the
application interface, any scripting logic, and the in-
terface to back-end services. However, developing
a device-independent application is inherently more
complex than developing a device-specific one. In the
next steps, the developer's burden will be alleviated
by inferring as much as possible about the designer's
intention, generating design-time artifacts where ap-
propriate and providing realistic defaults. Eventually,
the goal is to build a development environment that
supports a comprehensive methodology and allows de-
signers to manage the added complexity.

• Device-specific Rendering: Currently, device-specific
rendering is performed via static specification of the
mapping from the device independent application to
the toolkit and the form factor of particular platforms.

272

While this is adequate for adapting the presentation of
individual elements of a user interface, it is inadequate
for handling differing form factors and interface modal-
ities. In the next steps, capabili ty negotiation is being
introduced as a means to select, at load time, an in-
terface specification from a finite set of specifications.
Eventually, the goal is to investigate the use of auto-
matic synthesis to generate device-specific renderings
of an abstract interface specification.

Distr ibuted Services: Currently, networked-based ser-
vices are assumed, such as those supported by SLP.
However, applications and services should be associ-
ated with a local environment. In the next steps, ser-
vice frameworks and discovery mechanisms that are
appropria te for use over small-proximity, ad-hoc net-
works will be introduced. Eventually, the goal is to
develop and deploy a service adapta t ion layer that al-
lows uniform access to services hosted in various frame-
works.

Application Apportioning: Currently, a capabil i ty ne-
gotiation session is being used in conjunction with an
algorithm such as [18] to dynamically apport ion an
application at load-time. However, the resource envi-
ronment of a mobile device is hardly static. In the
next steps, run-t ime monitoring and service migra-
tion mechanisms will be introduced to dynamically
vary the application apport ionment between client and
server at run-time. Eventually, the goal is to introduce
caching and automatic checkpointing to support spo-
radic network disconnections and application recovery
following a client device failure, respectively.

Application Adaptat ion: Currently, applications are
writ ten to accommodate two classes of services: essen-
tial services, which must be present for the application
to proceed; and optional services, which, if present,
allow the application to provide addit ional functional-
ity. However, the application's execution environment
cannot be known statically at design-time. In the next
steps, composition techniques will be introduced to al-
low the functions of applications and services to be
chained together and enable the integration of their
respective user interfaces. Eventually, the goal is to
develop the interfaces and mechanisms needed to al-
low an application to identify and use a service at run-
t ime that was unanticipated when the application was
written.

The above research plan takes us from well-understood cur-
rent technologies towards realizing the application model
envisioned in this paper. However, addressing all the is-
sues within this broad research agenda is a challenge for the
entire mobile computing community.

7. SUMMARY
This paper began by exposing some of the l imitations be-
hind the way mobile computing devices are used today. As
the scenario illustrated, today 's applications do not enable
people to perform many of the tasks they need to do, do not
provide satisfying user experiences, and fall far short of the
potential for perversive computing.

For pervasive computing to meet the expectat ions of mobile
users, fundamental changes need to occur in the way people
perceive the roles of devices, applications and the environ-
ment. Again, devices need to be perceived as portals into
the appl ica t ion/data space supported by the environment,
rather than repositories of custom software. Applications
need to be seen as tasks performed on behalf of a user, not
a~ programs written to exploit the resources of a specific
computer. And, the computing environment needs to be
recognized as an extension of the user's surroundings, not a
virtual space for hosting and running programs.

To realize this vision of devices, applications and environ-
ments, we believe a new application model is needed. The
model is characterized by a device-independent application
development process, which includes abstract specification
of the application front-end and the application's resource
and service requirements. The model includes a highly dy-
namic load-time system supporting application discovery,
resource and capabili ty negotiation, and application appor-
tioning. The run-t ime system allows the resources to be
dynamically shared among client devices and servers. I t
also includes monitoring and checkpointing, and enables a
running application to migrate from device to device or to
simultaneously utilize the interface capabili t ies of multiple
devices.

Several on-going thrusts in pervasive computing, such as the
Portolano and Oxygen projects, share our view of the roles
of devices, applications and environments. The application
model presented here strengthens this common vision, par-
ticularly in the area of developing, deploying and manag-
ing applications. Moreover, the proposed application model
provides common underpinnings that can unify the view of
applications across such environments.

In summary, the application model introduces a number of
design-time, load-time and run-time challenges. These chal-
lenges expose the boundaries of the current s tate of the art ,
and must be addressed if the full potential of pervasive com-
puting is to be realized.

.

[I]

-[2]

[3]

[4]

[5]

REFERENCES
M. Abrams, C. Phanouriou, A. Batongbacal,
S. Williams, and J. Shuster. UIML: An
Appliance-Independent XML User Interface Language.
In Proceedings of the Eighth International World Wide
Web Conference, pages 617-630, May 1999.

N. Adams, , R. Gold, B. Schilit, M. Tso, and R. Want.
An Infrared Network for Mobile Computers. In
Proceedings of the USENIX Symposium on Mobile and
Location-Independent Computing, pages 41-52,
August 1993.

K. Arnold and J. Gosling. The Java Programming
Language, Second Edition. Addison Wesley, 1998.

K. Arnold, B. O'Sullivan, R. Scheifler, J. Waldo, and
A. Wollrath. The Jini Specification. Addison Wesley,
1999.

J. Beck, A. Geffiaut, and N. Islam. MOCA: A Service
Framework for Mobile Computing Devices. In

273

Proceedings of the International Workshop on Data
Engineering for Wireless and Mobile Access, pages
62-68, August 1999.

[6] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and
R Katz. An architecture for a secure service discovery
service. In Proceedings of the Fifth Annual
A CM/IEEE International Conference on Mobile
Computing and Networking, pages 24-35, August
1999.

[7] M. Dertouzos. The Oxygen Project. Scientific
American, 281(2):52-63, August 1999.

[8] R. Eckstein, M. Loy, and D. Wood. Java Swing.
O'R.eilly and Associates, 1998.

[9] M. Esler, J. Hightower, T. Anderson, and G. Borriello.
Next Century Challenges: Data-Centric Networking
for Invisible Computing. The Portolano Project at the
University of Washington. In Proceedings of the Fifth
A CM/IEEE International Conference on Mobile
Networking and Computing, pages 256-262, August
1999.

[10] D. Flanagan. JavaScript: The Definitive Guide.
O'Reilly and Associates, 1998.

[11] E. Guttman, C. Perkins, J. Viezades, and M. Day.
Service Location Protocol, Version 2. RFC 2608.
IETF, November 1998.

[12] K. Hopson, S. Ingrain, and P. Chan. Developing
Professional Java Applets. Sam's Publishing, 1996.

[13] R. Mettala. Bluetooth Protocol Architecture, Version
1.0. Bluetooth Special Interest Group, August 1999.
h t tp : / / w ~ . b luet ooth. com/v2/document.

[14] M. Satyanarayanan, J. Kistler, P. Kumar,
M. Okasaka, E. Siegel, and D. Steere. CODA: A
Highly Available File System for a Distributed
Workstation Environment. IEEE Transactions on
Computers, 39(4):447-459, April 1990.

[15] B. Schilit, N. Adams, R. Gold, M. Tso, and R. Want.
The PARCTAB Mobile Computing System. In
Proceedings of the Fourth Workshop on Workstation
Operating Systems, pages 34-39, October 1993.

[16] R. Sessions. COM and DCOM: Microsoft's Vision for
Distributed Objects. Wiley Computer Publishing, 1997.

[17] J. Siegel. CORBA Fundamentals and Programming.
Wiley Computer Publishing, 1996.

[18] H. Stone and S. Bokhari. Control of Distributed
Processes. Computer, 11(7):97-106, July 1978.

[19] SUN Microsystems Inc. Remote Procedure Call
Protocol Specification, Version 2. RFC 1057, June
1988.

[20] SUN Microsystems Inc. Remote Method Invocation
Specification, 1999.
http:/[www, j avasoft, com/products/jdk/l, i/-
does/guide/rmi/spec/rmiTOC, doc. html.

[21] C. Wiecha and S. Boles. Generating User Interfaces:
Principles and Use of ITS Style Rules. In Proceedings
of the Third Annual ACM SIGGRAPH Symposium on
User Interface Software and Technology, pages 21-30,
October 1990.

[22] J. Zukowski. Java A W T Reference. O'Reilly and
Associates, 1997.

2 7 4

