
Web Alphabet Soup

The Big Picture

• How desktop UIs work (input / output / arch)

• How human abilities affect UI design

• The Web

– Key ideas and technologies

– Some emerging standards

– A little bit of history

– Philosophy of web architecture

– Rapid prototyping

– Mobile web

Today

Outline

• The Web Today

– HTTP, HTML, URL

– XML

– DOM, SAX

– CSS, JavaScript

– SOAP, WSDL, UDDI

– AJAX, others

Hypertext Transfer Protocol (HTTP)

• Standard way of transferring content

• Often done on top of TCP, but doesn’t have to be

– For example, could have HTTP via Bluetooth

– Just requires reliable transport of data

HTTP Request Example

GET / HTTP/1.1

Host: uma.pt

User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.13) Gecko/20060414

Accept:
text/xml,application/xml,application/xhtml+xml,te
xt/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

HTTP Request Example

GET / HTTP/1.1

Host: uma.pt

User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.13) Gecko/20060414

Accept:
text/xml,application/xml,application/xhtml+xml,te
xt/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

• Request to http://uma.pt

• Text-based protocol (vs binary RPC)

• First line is the request, everything

else is a header

HTTP Request Example

GET / HTTP/1.1

Host: uma.pt

User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.13) Gecko/20060414

Accept:
text/xml,application/xml,application/xhtml+xml,te
xt/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

• HTTP defines some standard methods

• GET, POST, DELETE

• HEAD, PUT, TRACE

• / here is what web page to get

• HTTP/1.1 is the version

HTTP Request Example

GET / HTTP/1.1

Host: uma.pt

User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.13) Gecko/20060414

Accept:
text/xml,application/xml,application/xhtml+xml,te
xt/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

• “Host” says what web server name

• Added to HTTP1.1 for virtual hosting

HTTP Request Example

GET / HTTP/1.1

Host: uma.pt

User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.13) Gecko/20060414

Accept:
text/xml,application/xml,application/xhtml+xml,te
xt/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

• “User-Agent” is what web browser

• Note that it is trivial to lie here

HTTP Request Example

GET / HTTP/1.1

Host: uma.pt

User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.13) Gecko/20060414

Accept:
text/xml,application/xml,application/xhtml+xml,te
xt/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

• “Accept” is what MIME type your

browser can handle

• q-values specify preference

• text/html, image/gif

HTTP Request Example

GET / HTTP/1.1

Host: uma.pt

User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.13) Gecko/20060414

Accept:
text/xml,application/xml,application/xhtml+xml,te
xt/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

HTTP Request Example

GET / HTTP/1.1

Host: uma.pt

User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.13) Gecko/20060414

Accept:
text/xml,application/xml,application/xhtml+xml,te
xt/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

• “Keep-Alive” and “Connection” are

optimizations for HTTP1.1

HTTP Request

• Other headers:

– Referer (sic): what web page you were on

– Cookies: maintaining state between transactions

– If-Modified-Since: conditional get

• Easy to view these

• Easy for a proxy to modify headers as well

– For example, hiding browser type

HTTP Response Example

HTTP/1.x 200 OK

Date: Sun, 01 Oct 2006 22:45:16 GMT

Server: Apache/1.3.34 (Unix) mod_pubcookie/3.1.1

pre-beta1 (CMU-027) mod_ssl/2.8.25

OpenSSL/0.9.6m

Last-Modified: Thu, 21 Nov 2002 15:28:50 GMT

Etag: "385dd9-6ffb-3ddcfbb2"

Accept-Ranges: bytes

Content-Length: 28667

Keep-Alive: timeout=5

Connection: Keep-Alive

Content-Type: image/gif

HTTP Response Example

HTTP/1.x 200 OK

Date: Sun, 01 Oct 2006 22:45:16 GMT

Server: Apache/1.3.34 (Unix) mod_pubcookie/3.1.1

pre-beta1 (CMU-027) mod_ssl/2.8.25

OpenSSL/0.9.6m

Last-Modified: Thu, 21 Nov 2002 15:28:50 GMT

Etag: "385dd9-6ffb-3ddcfbb2"

Accept-Ranges: bytes

Content-Length: 28667

Keep-Alive: timeout=5

Connection: Keep-Alive

Content-Type: image/gif

• Version, response code, message

• Response code 200 is “OK”

• Response code 404 is “not found”

HTTP Response Example

HTTP/1.x 200 OK

Date: Sun, 01 Oct 2006 22:45:16 GMT

Server: Apache/1.3.34 (Unix) mod_pubcookie/3.1.1

pre-beta1 (CMU-027) mod_ssl/2.8.25

OpenSSL/0.9.6m

Last-Modified: Thu, 21 Nov 2002 15:28:50 GMT

Etag: "385dd9-6ffb-3ddcfbb2"

Accept-Ranges: bytes

Content-Length: 28667

Keep-Alive: timeout=5

Connection: Keep-Alive

Content-Type: image/gif

• What server is being used

HTTP Response Example

HTTP/1.x 200 OK

Date: Sun, 01 Oct 2006 22:45:16 GMT

Server: Apache/1.3.34 (Unix) mod_pubcookie/3.1.1

pre-beta1 (CMU-027) mod_ssl/2.8.25

OpenSSL/0.9.6m

Last-Modified: Thu, 21 Nov 2002 15:28:50 GMT

Etag: "385dd9-6ffb-3ddcfbb2"

Accept-Ranges: bytes

Content-Length: 28667

Keep-Alive: timeout=5

Connection: Keep-Alive

Content-Type: image/gif

• How much content is being sent

• What is the MIME type

HTTP Comments

• Simple stateless protocol

– Text-based, easy to inspect, easy for proxies

– Few well-defined methods that can be used for resources

• GET, POST

• Common case of just getting data is relatively basic

• Gets thornier with HTTP 1.1 though

– Lots of hacks to make it work with persistent connections

Hypertext Markup Language (HTML)

• Standard way of representing content

– Original version mixed content with presentation

• Ex. Bold, Italics, Font

– Older versions relied heavily on tables for layout

– Now, cleaner separation with style sheets

• More about HTML and CSS in a second

Uniform Resource Locator (URL)

• URL is a standard way of addressing content

– URL is a URI (Uniform Resource Identifier)

• URN is a standard way of naming content

– mailto:java-net@java.sun.com

– news:comp.lang.java

– isbn:096139210x

Outline

• The Web Today

– HTTP, HTML, URL

– XML

– DOM, SAX

– CSS, JavaScript

– SOAP, WSDL, UDDI

– AJAX, others

XML

• Stands for Extensible Markup Language

– Intended to facilitate data exchange

– Rather than having many ways of representing and

parsing data, create one standard extensible way

• Lots of hype, but industry adoption is strong

– Odds are high you will have to deal with XML

XML

<?xml version="1.0"? encoding="UTF-8" >

<person>

 <name type="full">John Doe</name>

 <tel type="home">412-555-4444</tel>

 <tel type="work">412-268-5555</tel>

 <email>johndoe@anon.net</email>

</person>

• Basic idea: Like HTML, but more structured and

with definable tags

XML Structure

• XML documents have no semantics

– Up to the programs using them

– Often defined by a committee

• Structure determined by schema
– Fancy way of saying what tags and values are allowed

• Schema #1 – Document Type Definition
– Currently a standard, sort of messy

• Schema #2 – XML Schema
– Currently a recommendation, extremely complex

XML Notes

• XML absolutely must be properly formatted
– Not sloppy like HTML

• XHTML is XML-formatted HTML
– Currently recommended

• Subjective opinion about XML
– Basic idea of XML is good

– But doesn’t make easy things easy

– Quickly blowing out of control with too many changes

• XPath, XQuery, XPointer, XSL, XSLT, etc

– Didn’t consult experts in databases

Outline

• The Web Today

– HTTP, HTML, URL

– XML

– DOM, SAX

– CSS, JavaScript

– SOAP, WSDL, UDDI

– AJAX, others

Document Object Model (DOM)

• A way of representing parsed HTML (or XML)

• Mostly analogous to interactor tree

– Tree of HTML elements

– Each element has multiple properties

• One easy way to modify web page is to modify DOM

– Find the right element, modify it

– Add an element

– Remove an element

Document Object Model (DOM)

• Many programming languages have DOM support

– Ex. Java is org.w3c.dom.*

• JavaScript makes it trivial to access DOM

– Built-in variable called document

• Ex. document.body, or document.head

– Built-in methods

• document.getElementById()

• document.getElementsByName()

• document.getElementsByTagName()

JavaScript and DOM

<div id="d1" name="fname">Div #1</div>

<div id="d2" name="fname">Div #2</div>

<div id="d3">Div #3</div>

• document.getElementById("d1")

• document.getElementsByName("fname")

• document.getElementsByTagName("div")

Document Object Model (DOM)

• Unfortunately, DOM is not 100% cross-platform

– Different browsers and software packages have
different levels of DOM compliance, bugs

• DOM also requires you to parse and load entire

web page into memory

– May be overkill for simple things

– Browser has to do this anyway though

Simple API for XML (SAX)

• Another way of processing web pages (and XML)

• Basic idea:

– Instantiate a SAX Parser

– Give it a handler

– SAX parser incrementally parses web page / xml

one element at a time

– SAX parser makes callback to handler when appropriate

Java Example of SAX

• org.w3c.sax.*

• org.w3c.sax.helpers.DefaultHandler

public class MyHandler
 extends DefaultHandler {

 public void startElement(...) {

 }

 public void endElement (...) {

 }

 public void characters(...) {

 }

}

Simple API for XML (SAX)

<html>

<body>

 Some text and a link

</body>

</html>

Calls startDocument()

Simple API for XML (SAX)

<html>

<body>

 Some text and a link

</body>

</html>

Calls startElement("html")

Simple API for XML (SAX)

<html>

<body>

 Some text and a link

</body>

</html>

Calls startElement("body")

Simple API for XML (SAX)

<html>

<body>

 Some text and a link

</body>

</html>

Calls characters()

Simple API for XML (SAX)

<html>

<body>

 Some text and a link

</body>

</html>

Calls startElement("a")

Simple API for XML (SAX)

<html>

<body>

 Some text and a link

</body>

</html>

Calls characters()

Simple API for XML (SAX)

<html>

<body>

 Some text and a link

</body>

</html>

Calls endElement("a")

Simple API for XML (SAX)

• SAX not built into JavaScript

• SAX has small memory footprint, in theory faster

• SAX API highly un-object-oriented

– Passes lots of character arrays

– Meant to be a uniform API across multiple

programming languages

• When to use?

– Simple stateless transformations, ex. remove banner ads

Recap

• Two basic ways of handling HTML (and XML):

• DOM

– Parse document into a tree

– Manipulate tree as needed

– More flexible, but entire document in memory

• SAX

– As you parse, issue callbacks

– Only small part of document in memory at any time

– Simple and fast, but non-object-oriented API

Administrivia

• P3 Progress?

– Use of color?

– Mapping / layout / grouping?

Outline

• The Web Today

– HTTP, HTML, URL

– XML

– DOM, SAX

– CSS

– SOAP, WSDL, UDDI

– AJAX, others

Why Cascading Style Sheets?

• Developed by Håkon Lie and Bert Bos in mid 1990s

• Basic idea: separate content from presentation

• HTML not meant to support styling information

– But browsers started supporting inline style changes

(bold, italics, centered, etc)

– Why is this a problem?

• Inline styling information is problematic

– Difficult to change if in multiple places

– Harder to make consistent

– No support for different display formats (audio, mobile)

– Bloats pages

Why Cascading Style Sheets?

• Specify content in one file (HTML)

• Specify presentation in another (CSS)

Example Use of CSS

• Can specify styles for all of tags of a type

p {

 font-family: "Garamond", serif;

}

h2 {

 font-size: 110%;

 color: red;

 background: white;

}

Example Use of CSS

• Can specify styles for a class of tags

.note {

 color: red;

 background: yellow;

 font-weight: bold;

 }

<div class="note">Div #1</div>

<div class="note">Div #2</div>

Example Use of CSS

• Can specify styles for a specific id

#homeAddress {

 color: black;

 font-weight: bold;

 }

<div id="homeAddress">blah blah</div>

CSS Notes

• Note: different syntax than XML

– Would have been in XML format except didn’t exist then

• Can specify how to apply a style many ways:

– By tag type

– By class

– By id

– By arbitrary attribute

– By proximity

– …

CSS Notes

• Can provide several style sheet options

– Give titles to each style sheet

– One preferred (default) style, the rest are alternates

– Ex. An online magazine

• Screen

• Aural, braille, embossed

• Print

• Makes it easy to switch visual appearance

Cascading?

• Multiple styles can be combined

– In theory, can be a CSS associated with
site, page, browser, user

– Have some way of handling conflicts

• In practice, cascading hasn’t taken off

– Usually web site specifies only style sheet

CSS Notes

• Mostly integrated with JavaScript

– element.style.borderColor

• Compatibility issues (like JavaScript)

– Makes it a real pain to support multiple browsers

• Style in DOM reflects fully processed style sheet

– Led to interesting history stealing hack

– http://jeremiahgrossman.blogspot.com/2006/08/i-know-

where-youve-been.html

– Create a list of links to popular sites

– Iterate through those links

– Keep links whose color is “visited”

Cascading Style Sheets

• Good for general maintenance

– Good principle of large-scale systems is to
factor out common things

• Good for accessibility

– Can apply an appropriate style sheet

– Don’t have to wade through tables for layout

• Good for mobile web

– Almost everything good for accessibility is good for mobile

– However, style sheets haven’t taken off for mobile

– Typically, re-target key parts of web site for mobile

Stepping Back, Big Picture

HTML

XHTML - Content

CSS - Presentation

JavaScript - Behavior

• Sort of like evolution of Model-View-Controller

2 Minute Break

Outline

• The Web Today

– HTTP, HTML, URL

– XML

– DOM, SAX

– CSS

– SOAP, WSDL, UDDI

– AJAX, others

Web Services

• Huge standardization and interoperability effort

• Basic idea: standard formats, protocols, and

programming model for accessing a service

– Ex. Google search code.google.com

– Ex. Ebay search developer.ebay.com

– Ex. Amazon book search aws.amazon.com

• Works for all programming languages

– Just need to send a formatted message to the right place

http://code.google.com/apis/soapsearch/

Web Services Acronyms

• SOAP

• WSDL

• UDDI

Simple Object Access Protocol (SOAP)

• Protocol for message exchange

– Specifies how to call a remote service

– Can pass some XML objects

– Can return some XML objects

– RPC over HTTP using XML

• Similar to Java RMI or CORBA RMI

“Simple” SOAP Request

<soap:Envelope xmlns:soap =

"http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <getProdDetails xmlns =

"http://warehouse.example.com/ws">

 <productId>827635</productId>

 </getProdDetails>

 </soap:Body>

 </soap:Envelope>

“Simple” SOAP Response
<soap:Envelope xmlns:soap="http://... ">
<soap:Body>
<getProdDetailsResponse xmlns =
"http://warehouse.example.com/ws">

<getProductDetailsResult>
 <productName>Toptimate 3-Piece Set

 </productName>
 <productId>827635</productId>
 <description>

 3-Piece luggage set Polyester

 </description>
 <price>96.50</price>
 <inStock>true</inStock>
 </getProductDetailsResult>
</getProductDetailsResponse>
</soap:Body>
</soap:Envelope>

“Simple” SOAP Response
<getProductDetailsResult>

<productName>

 Toptimate 3-Piece Set

 </productName>

<productId>827635</productId>

<description>

 3-Piece luggage set Polyester

 </description>
<price>96.50</price>
<inStock>true</inStock>

</getProductDetailsResult>

SOAP Notes

• Somewhat messy and confusing, but good tools

will handle ugly details for you transparently

Web Services Description Language (WSDL)

• Problem: How to know what services a web site

offers? And what data to send via SOAP?

• Solution: Describe web service’s API using WSDL

– Ex. in Java, we have:

• Interfaces for specifying APIs

• public int getValue(char ch)

– WSDL does the equivalent

Web Services Description Language (WSDL)

• WSDL document describes:

– Data formats

– Valid messages

– Ports, a collection of operations you can do (like library)

– Each port has a binding

• Binding is how to contact (ex. http)

• Binding is how to format messages (what encoding)

Web Services Description Language (WSDL)

• Example:

– http://api.google.com/GoogleSearch.wsdl

• Like SOAP, somewhat messy and confusing, but

good tools handle these for you

Universal Description,

Discovery, & Integration (UDDI)

• Problem: How to find WSDLs?

• Solution: A universal registry of WSDL services

• Let businesses list services they provide

– While pages – real address and contact information

– Yellow pages – industrial categorization

– Green pages – technical information on exposed services

• Originally envisioned to be one global UDDI registry

– Could dynamically bind to, ex. credit card authentication

– In practice, UDDI for a company

• Much easier integration

Web Services Recap

• SOAP

– Protocol for exchanging
messages (request /

response)

• WSDL

– A description of the web

service’s API

• UDDI

– How to find available

web services

Will Web Services Take Off?

• Provides an explicit way of opening up a system

– Consider alternative, screen-scraping Amazon prices

• Strong interoperability

• Early buy-in from Google, EBay, Amazon, others

• Different APIs for different services

– Hard to switch (since APIs aren’t uniform)

• Barrier to entry pretty high

• Conjecture: very likely to be adopted, but only

incremental improvement on top of existing web

Outline

• The Web Today

– HTTP, HTML, URL

– XML

– DOM, SAX

– CSS, JavaScript

– SOAP, WSDL, UDDI

– AJAX, others

AJAX

• Asynchronous JavaScript and XML

– Highly interactive web apps

– Examples: Google Maps

Rich Internet Applications (RIA)

• Yet another buzzword without a proper definition

– Basically, make web apps more like desktop GUI

– Many would consider AJAX part of this

– Might include Macromedia Flash, Java applets, ActiveX

• More on pros and cons next time

• Will stick with RIA since not tied to specific technology

Two Kinds of Rich Internet Applications

• Two basic forms (not mutually exclusive)

• #1 – Rich interactions by cleverly manipulating DOM

– Ex. http://www.openrico.org/rico/demos.page

– Ex. http://dojotoolkit.org

Rich Internet Applications (RIA)

• Two basic forms (not mutually exclusive)

• #2 – Update content without explicitly reloading

– XMLHttpRequest object in JavaScript

– Can asynchronously request information from a server

– Can load that information into page on-demand (DOM)

XMLHttpRequest Example
var req;

function xmlOpen(method, url,
 toSend,responseHandler) {
 req = new XMLHttpRequest();
 req.onreadystatechange = responseHandler;
 req.open(method, url, true);
 req.setRequestHeader("content-type",
 "application/x-www-form-urlencoded");

 req.send(toSend);
}

function myResponseHandler() {

 if (req.readyState == 4) {

 // do something with req.responseText

 }

}

Networked RIAs

• Pros

– Smoother and more fluid interaction

– Don’t have to wait for entire page to reload

– Easier to maintain things in context

• Some Issues

– How to bookmark?

– Broken back button?

– Easier to spy on people

– Breaks user model of when data gets transferred (forms)

– How to handle server load? Network latency?

Summary

• The Web Today

– HTTP, HTML, URL

– XML

– DOM, SAX

– CSS, JavaScript

– SOAP, WSDL, UDDI

– AJAX, others

• Reading for next time

– Printed and at beginning of class

– Principled design of the modern Web architecture, by

Fielding and Taylor, ICSE2000

http://doi.acm.org/10.1145/337180.337228

– Accessible via ACM Digital Library

Extra slides

The Web Tomorrow? – Summary

• Future very hazy

• Lots of opportunities

– Semantic web

– AJAX / RIAs

– Customization of web pages

GreaseMonkey

• Customize web presentation on the client-side

• Examples:

– Make all URLs clickable links

– For every book on Amazon, show if your local library has it

– Add a link to Google Maps views to see the nearest

geocaches to the current center of the map

• Basic Idea:

– Site-specific JavaScript which manipulates the contents

of a webpage via the DOM

ChickenFoot

• Research Project at MIT

• Same basic idea as GreaseMonkey, with easier

end-user programming

– No JavaScript

• Easier page manipulation:

– go("google.com")

– enter(“saui")

– click("google search")

– pick(‘gif’)

– isbn = find(new TC('number just after isbn'))

Early Web Growth

How is CSS applied?

!" Source document is parsed into a DOM tree

#" Media type is identified

$" Relevant stylesheets obtained

%" DOM tree annotated with values to every property

&" Formatting structure generated

'" Formatting structure presented (rendered)

JavaScript / ECMAScript

• Most common scripting language

– Originally supported by Netscape, eventually by IE

• Typically embedded in HTML page

– Executable computer code within the HTML content

– Interpreted at runtime on the client side

• Can be used to dynamically manipulate HTML

– Has access to DOM

– Can react to events (ex. onmouseover)

– Can be used to dynamically place data in the first place

– Often used to validate form data

JavaScript Syntax

• Code written within <script> element

– e.g., <script type="text/javascript">
document.write("Hello World!")

 </script>

– Use src attribute for scripts in external files

– <script type="text/javascript"

src="http://.../global.js">

JavaScript Syntax

• HTML Elements have script-specific event attributes

– e.g., <body onmousedown="whichButton()">

– e.g., <input type="button" onclick="uncheck()">

• Three important things:

– JavaScript supported on nearly all browsers

– Direct access to the HTML DOM model

• Makes this the language of choice for client-side web

– XMLHttpRequest feature

• Basis of Google Maps and other similar apps

Semantic Web

• Put everything in a machine-understandable format

– Eliminate screen-scraping

– Would allow for faster and more effective searches

– Would allow us to apply logical operators to data

• Basic Idea: Artificial Intelligence meets web and XML

– RDF (Resource Description Framework)

– OWL (Web Ontology Language)

Semantic Web

• RDF (Resource Description Framework)

– Metadata describing content

– Ex. Author, homepage, price, etc

– Primarily a standardization effort

Semantic Web

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-
rdf-syntax-ns#"
xmlns:cd="http://www.recshop.fake/cd#">

<rdf:Description rdf:about=
"http://www.recshop.fake/cd/Empire Burlesque">
<cd:artist>Bob Dylan</cd:artist>
<cd:country>USA</cd:country>
<cd:company>Columbia</cd:company>
<cd:price>10.90</cd:price>
<cd:year>1985</cd:year>

</rdf:Description>

</rdf:RDF>

Semantic Web

• OWL (Web Ontology Language)

– Lets you formally specify a knowledge domain

– Richer (and more complex!) vocabulary for describing

properties and classes

• Basically first-order predicate logic

• Ex. Uncle is brother-of parent

– Other example features:

• Disjointness

• Cardinality (“exactly one”)

• Equality

Semantic Web

• Some Problems:

– Primarily academic, industry doesn’t seem interested

• Industry effort more on web services right now

– Huge amount of effort with (thus far) little benefit

– Example problems don’t seem interesting

• Friend of a Friend

– Not clear how many people need to buy-in before

semantic web gets useful

