Human-Computer Interaction Institute

The Big Picture

How desktop Uls work (input / output / arch)

How human abilities affect Ul design

The Web

— Key ideas and technologies
— Some emerging standards

4

— A little bit of history

— Philosophy of web architecture

— Rapid prototyping
— Mobile web

Today

Outline

- The Web Today

— HTTP, HTML, URL

— XML

— DOM, SAX

— CSS, JavaScript

— SOAP, WSDL, UDDI
— AJAX, others

HTTPHIML URLs
(in bed)

Hypertext Transfer Protocol (HTTP)

- Standard way of transferring content

- Often done on top of TCP, but doesn’t have to be
— For example, could have HTTP via Bluetooth
— Just requires reliable transport of data

HTTP Request Example

GET /HTTP/1.1
Host: uma.pt

User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.13) Gecko/20060414

Accept:
text/xml,application/xml,application/xhtml+xmi,te
xt/html;q=0.9,text/plain;g=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1ISO-8859-1,utf-8;9=0.7,*;9=0.7

Keep-Alive: 300

Connection: keep-alive

HTTP Request Example

GET /HTTP/1.1
Host: uma.pt

User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.13) Gecko/20060414

Accept:
text/xml,
xt/html;¢

Accept-L

* Request to http://uma.pt

 Text-based protocol (vs binary RPC)

Accept-En * Firstline is the request, everything

Accept-C
Keep-Aliv
Connectio

else Is a header

HTTP Request Example

GET /HTTP/1.1

« HTTP defines some standard methods
« GET, POST, DELETE
« HEAD, PUT, TRACE

* / here is what web page to get

« HTTP/1.1 is the version

HTTP Request Example

Host: uma.pt

* “‘Host” says what web server name
* Added to HTTP1.1 for virtual hosting

HTTP Request Example

User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.13) Gecko/20060414

 “User-Agent” is what web browser
* Note that it is trivial to lie here

HTTP Request Example

Accept:
text/xml,application/xml,application/xhtml+xml,te
xt/html;q=0.9,text/plain;q=0.8,image/png,*/*;g=0.5

* “Accept” is what MIME type your
browser can handle
* g-values specify preference
* text/html, image/qgif

HTTP Request Example

Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: 1ISO-8859-1,utf-8;9=0.7,*;9=0.7

HTTP Request Example

» “Keep-Alive” and “Connection” are
optimizations for HTTP1.1

Keep-Alive: 300
Connection: keep-alive

HTTP Request

- Other headers:
— Referer (sic): what web page you were on
— Cookies: maintaining state between transactions

— If-Modified-Since: conditional get

- Easy to view these

- Easy for a proxy to modify headers as well
— For example, hiding browser type

HTTP Response Example

HTTP/1.x 200 OK
Date: Sun, 01 Oct 2006 22:45:16 GMT

Server: Apache/1.3.34 (Unix) mod_pubcookie/3.1.1
pre-betal (CMU-027) mod_ssl/2.8.25
OpenSSL/0.9.6m

Last-Modified: Thu, 21 Nov 2002 15:28:50 GMT
Etag: "385dd9-6ffb-3ddcfbb2"
Accept-Ranges: bytes

Content-Length: 28667

Keep-Alive: timeout=5

Connection: Keep-Alive

Content-Type: image/gif

HTTP Response Example

HTTP/1.x 200 OK

* Version, response code, message
* Response code 200 is “OK”"
* Response code 404 is “not found”

HTTP Response Example

Server: Apache/1.3.34 (Unix) mod_pubcookie/3.1.1
pre-betal (CMU-027) mod_ssl/2.8.25
OpenSSL/0.9.6m

* What server is being used

HTTP Response Example

 How much content is being sent
* What is the MIME type

Content-Length: 28667

Content-Type: image/gif

HTTP Comments

- Simple stateless protocol
— Text-based, easy to inspect, easy for proxies

— Few well-defined methods that can be used for resources
- GET, POST

- Common case of just getting data is relatively basic
. Gets thornier with HTTP 1.1 though

— Lots of hacks to make it work with persistent connections

Hypertext Markup Language (HTML)

- Standard way of representing content
— Original version mixed content with presentation
- Ex. Bold, ltalics, Font
— Older versions relied heavily on tables for layout
— Now, cleaner separation with style sheets

- More about HTML and CSS in a second

Uniform Resource Locator (URL)

- URL is a standard way of addressing content
— URL is a URI (Uniform Resource ldentifier)

- URN is a standard way of naming content
— mailto:java-net@java.sun.com

— news:comp.lang. java
— isbn:096139210x

& URI)
r N
URL I URN
2 i,

Outline

- The Web Today
— HTTP, HTML, URL
— XML
_ DOM, SAX : K Extensible
— CSS, JavaScript Markup
— SOAP, WSDL, UDDI Language

— AJAX, others

XML

Stands for Extensible Markup Language
— Intended to facilitate data exchange

— Rather than having many ways of representing and
parsing data, create one standard extensible way

Lots of hype, but industry adoption is strong
— Odds are high you will have to deal with XML

XML

Basic idea: Like HTML, but more structured and
with definable tags

<?xml version="1.0"7? encoding="UTF-8" >
<person>
<name type="full">John Doe</name>
<tel type="home">412-555-4444</tel>
<tel type="work">412-268-5555</tel>
<email>johndoe@anon.net</email>
</person>

XML Structure

XML documents have no semantics
— Up to the programs using them
— Often defined by a committee

Structure determined by schema
— Fancy way of saying what tags and values are allowed

Schema #1 — Document Type Definition
— Currently a standard, sort of messy

Schema #2 — XML Schema

— Currently a recommendation, extremely complex

XML Notes

- XML absolutely must be properly formatted
— Not sloppy like HTML

- XHTML is XML-formatted HTML

— Currently recommended

- Subjective opinion about XML
— Basic idea of XML is good
— But doesn’t make easy things easy
— Quickly blowing out of control with too many changes
- XPath, XQuery, XPointer, XSL, XSLT, etc
— Didn’t consult experts in databases

Outline

The Web Today

— HTTP, HTML, URL
— XML

— DOM, SAX

— CSS, JavaScript
— SOAP, WSDL, UDDI
— AJAX, others

Document Object Model (DOM)

- A way of representing parsed HTML (or XML)

- Mostly analogous to interactor tree
— Tree of HTML elements
— Each element has multiple properties

- One easy way to modify web page is to modify DOM
— Find the right element, modify it
— Add an element
— Remove an element

. DOM Inspeclor - G IR
T GR Jewch Yew ook Window b
& A Sy pact
11 = Document - DOM Nodes bo TN« Obomct- Juvmsorpt Obgect b
rodetvave =~ Migerty Vohe "
L 0N Al lewgee [cbrmct HTML IrgetDinment) -~
e nocdellere eur
% NOGCRIPT PO e (radl)
e nodeTyoe i
#:covert . parertiocks [obomct HTMLF oot |
- Pl Scadinde: (cbrmct Vxdel et |
~LINTER FratChid (i)
e et it rad)
#ooment roravioantting [cbwect Teat)
e » et Sbing [cbect Teut)
~roEM v wrbrer (cbrmect Narva P oceMag)
e ¥ ovwrerCOoouvert [cboect HTMLDocument)
neuT reeetlnf cew hurction roortDefored) { [ratwe code))
¢ rechace bl furction replace"had) | [native code) |
#oreert remvoveChid furction removeChid) { [natave code))
[wpendhid furction agpenahdd) | [ratave code))
et hasChdodes furction haaChidodes) | [natve code] |
ek " chormbiode furction doneiiode() { [native code] | v

|’-.‘._:AA“.‘._- A . \.l A"d:. ’ .. - '- ' “.‘..'.: -“-

Document Object Model (DOM)

- Many programming languages have DOM support
— Ex. Java is org.w3c.dom. *

- JavaScript makes it trivial to access DOM
— Built-in variable called document
- EX. document.body, or document.head
— Built-in methods
- document.getElementById()
- document.getElementsByName ()
- document.getElementsByTagName ()

JavaScript and DOM

<div id="dl" name="fname">Div #1</div>
<div id="d2" name="fname">Div #2</div>
<div id="d3">Div #3</div>

- document.getElementById("d1l")
- document.getElementsByName (" fname")
- document.getElementsByTagName ("div")

Document Object Model (DOM)

- Unfortunately, DOM is not 100% cross-platform

— Different browsers and software packages have
different levels of DOM compliance, bugs

- DOM also requires you to parse and load entire
web page into memory
— May be overkill for simple things
— Browser has to do this anyway though

Simple API for XML (SAX)

- Another way of processing web pages (and XML)

- Basic idea:
— Instantiate a SAX Parser
— Give it a handler

— SAX parser incrementally parses web page / xml
one element at a time

— SAX parser makes callback to handler when appropriate

Java Example of SAX

- org.w3c.sax.*

- org.w3c.sax.helpers.DefaultHandler

Simple API for XML (SAX)

Calls startDocument ()

<html>

<body>
Some text and a link

</body>

</html>

Simple API for XML (SAX)

/ Calls startElement ("html")

<html>

<body>
Some text and a link

</body>

</html>

Simple API for XML (SAX)

<html>
/ Calls startElement ("body")
<body>

Some text and a link
</body>
</html>

Simple API for XML (SAX)

Calls characters ()

Some text and a link
</body>
</html>

Simple API for XML (SAX)

<html> Calls startElement ("a")
<body> *

Some text and a link
</body>

</html>

Simple API for XML (SAX)

<html> Calls characters ()
<body> *

Some text and a link
</body>

</html>

Simple API for XML (SAX)

<html> Calls endElement ("a")
<body> *

Some text and a link
</body>

</html>

Simple API for XML (SAX)

- SAX not built into JavaScript
- SAX has small memory footprint, in theory faster

- SAX API highly un-object-oriented

— Passes lots of character arrays

— Meant to be a uniform API across multiple
programming languages

- When to use?
— Simple stateless transformations, ex. remove banner ads

Recap

- Two basic ways of handling HTML (and XML):
- DOM

— Parse document into a tree
— Manipulate tree as needed
— More flexible, but entire document in memory

- SAX
— As you parse, issue callbacks
— Only small part of document in memory at any time
— Simple and fast, but non-object-oriented API

Administrivia

- P3 Progress?
— Use of color?
— Mapping / layout / grouping?

Outline

The Web Today

— HTTP, HTML, URL

— XML

— DOM, SAX | ﬂg H'Mﬂ
— 059 = Gnnno LRHG-—

— SOAP, WSDL, UDDI
— AJAX, others

Why Cascading Style Sheets?

Developed by Hakon Lie and Bert Bos in mid 1990s
Basic idea: separate content from presentation

HTML not meant to support styling information

— But browsers started supporting inline style changes
(bold, italics, centered, etc)

— Why is this a problem?

Inline styling information is problematic
— Difficult to change if in multiple places

— Harder to make consistent

— No support for different display formats (audio, mobile)
— Bloats pages

Why Cascading Style Sheets?

- Specify content in one file (HTML)
- Specify presentation in another (CSS)

Example Use of CSS

- Can specify styles for all of tags of a type

P {
font-family: "Garamond'", serif;

}

h2 {
font-size: 110%;
color: red;

background: white;

Example Use of CSS

Can specify styles for a class of tags

.note {
color: red;
background: yellow;
font-weight: bold;

<div class="note">Div #1</div>
<div class="note">Div #2</div>

Example Use of CSS

Can specify styles for a specific id

#homeAddress ({
color: black;
font-weight: bold;

<div id="homeAddress'">blah blah</div>

CSS Notes

- Note: different syntax than XML

— Would have been in XML format except didn't exist then

- Can specify how to apply a style many ways:
— By tag type
— By class
— By id
— By arbitrary attribute
— By proximity

CSS Notes

Can provide several style sheet options
— Give titles to each style sheet
— One preferred (default) style, the rest are alternates
— EX. An online magazine
.+ Screen
- Aural, braille, embossed
. Print

Makes it easy to switch visual appearance

Cascading?

- Multiple styles can be combined

— In theory, can be a CSS associated with
site, page, browser, user

— Have some way of handling conflicts

- In practice, cascading hasn'’t taken off
— Usually web site specifies only style sheet

CSS Notes

- Mostly integrated with JavaScript

— element.style.borderColor

- Compatibility issues (like JavaScript)
— Makes it a real pain to support multiple browsers

. Style in DOM reflects fully processed style sheet
— Led to interesting history stealing hack

— http://jeremiahgrossman.blogspot.com/2006/08/i-know-
where-youve-been.html

— Create a list of links to popular sites
— lterate through those links
— Keep links whose color is “visited”

Cascading Style Sheets

- Good for general maintenance

— Good principle of large-scale systems is to
factor out common things

- Good for accessibility
— Can apply an appropriate style sheet
— Don’t have to wade through tables for layout

- Good for mobile web
— Almost everything good for accessibility is good for mobile
— However, style sheets haven't taken off for mobile
— Typically, re-target key parts of web site for mobile

Stepping Back, Big Picture

— XHTML - Content

HTML ——| CSS - Presentation

- JavaScript - Behavior

- Sort of like evolution of Model-View-Controller

2 Minute Break

Outline

- The Web Today
— HTTP, HTML, URL

— XML
— DOM, SAX

— CSS |

— SOAP, WSDL, UDDI (EERTEES

— AJAX, others

Web Services

- Huge standardization and interoperability effort

- Basic idea: standard formats, protocols, and
programming model for accessing a service

— EX. Google search code.google.com
— EXx. Ebay search developer.ebay.com
— Ex. Amazon book search aws.amazon.com

- Works for all programming languages
— Just need to send a formatted message to the right place

Google

Adogt Gosgle
Gaagle Web APk

» Ohverview
Diowr s s
Cradte Accounl
l.oﬂv..h! H.h
AP Torms
FAOs
Referonce
Relearo Notas

Gaaqle Desitop AP|
Wate handy plug-ns for
Goagle Desktop Search

Gaoqle AdWoaords AP
Manage your sccourts,
bt mew 1ools pud
repots, aod moee

Google Web APIs (beta)

Develop Your Own Applications Using Google

With the Google Web APy serace, softwars Seveiopers can quary bikons of
web pages deectly from ther own computer programs Googhe uses the SOAP
and WSDL standands 30 3 developer can progeam n Mg or hee favorde
erveormant - tuch a5 Jave, Perd, or Viswsl Stedo NET

To st witing programs veng Gosghe Wb APy

2

Downlead the developer’s bit

The Google Web APl deviiogers ki prowdes Sotumentaton sd sxample
code for yting the Google Wb AP semice The downlosd includes Java
and NET programeing examples snd & WSOL S for witing peogeama on
Aty platfoem That supports web Seneces

Create a2 Gaogle Accoum

To access the Google Web APis servce, you must c2eate 3 Google
Accourt and cbisn 3 Scense key Your Gosgle Account and koense key
srtitle you to 1 000 stomated quenes per day

Wine your program using your license bey
Your program must nclode your SConse key with oach quory you sudmd 1o
the Google Web AFls servce. Check out awr Getling Molp page of read the

Program ldeas

Auto-mardor the web %r row
irformation on a subject

Glean market research insghts and
trends gver tme

irvenl & calchy onire game
Create » novel Ul for searching

Add Googe's spelkchackng 1o an
asrchoaton

http://code.google.com/apis/soapsearch/

Web Services Acronyms

- SOAP
- WSDL
- UDDI

Simple Object Access Protocol (SOAP)

Protocol for message exchange
— Specifies how to call a remote service
— Can pass some XML objects

— Can return some XML objects
— RPC over HTTP using XML

Similar to Java RMI or CORBA RMI

“Simple” SOAP Request

<soap:Envelope xmlns:soap =
"http://schemas.xmlsoap.org/soap/envelope/">

</soap:Body>

</soap:Envelope>

“Simple” SOAP Response

<soap:Envelope xmlns:soap="http://... ">
<soap:Body>

<getProdDetailsResponse xmlns =
"http://warehouse.example.com/ws">

<getProductDetailsResult>
<productName>Toptimate 3-Piece Set

</productName>
<productId>827635</productId>
<description>

3-Piece luggage set Polyester

</description>

<price>96.50</price>

<inStock>true</inStock>
</getProductDetailsResult>

</getProductDetailsResponse>
</soap:Body>
</soap:Envelope>

“Simple” SOAP Response

<getProductDetailsResult>

<productName>
Toptimate 3-Piece Set
</productName>

<productId>827635</productId>

<description>
3-Piece luggage set Polyester
</description>

<price>96.50</price>
<inStock>true</inStock>

</getProductDetailsResult>

SOAP Notes

- Somewhat messy and confusing, but good tools
will handle ugly details for you transparently

Web Services Description Language (WSDL)

Problem: How to know what services a web site
offers? And what data to send via SOAP?

- Solution: Describe web service’s APl using WSDL
— EXx. in Java, we have:
- Interfaces for specifying APIs
- public int getValue (char ch)
— WSDL does the equivalent

Web Services Description Language (WSDL)

- WSDL document describes:
— Data formats
— Valid messages
— Ports, a collection of operations you can do (like library)
— Each port has a binding
- Binding is how to contact (ex. http)
- Binding is how to format messages (what encoding)

Web Services Description Language (WSDL)

Example:
- http://api.google.com/GoogleSearch.wsdl

- Like SOAP, somewhat messy and confusing, but
good tools handle these for you

Universal Description,
Discovery, & Integration (UDDI)

Problem: How to find WSDLs?
Solution: A universal registry of WSDL services

Let businesses list services they provide

— While pages - real address and contact information
— Yellow pages - industrial categorization
— Green pages - technical information on exposed services

Originally envisioned to be one global UDDI registry
— Could dynamically bind to, ex. credit card authentication
— In practice, UDDI for a company

- Much easier integration

Web Services Recap

- SOAP Service
: Broker

— Protocol for exchanging UDDil
messages (request /
response) ;
. WSDL o

WSDL WSDL
— A description of the web K ‘

service’s AP ‘_@ m
. UDDI ~l—

: : i ervice
— How to find available Rﬁ:{,".,:?e, vam,

web services

Will Web Services Take Off?

- Provides an explicit way of opening up a system
— Consider alternative, screen-scraping Amazon prices

- Strong interoperability
- Early buy-in from Google, EBay, Amazon, others

- Conjecture: very likely to be adopted, but only
incremental improvement on top of existing web

Outline

The Web Today

— HTTP, HTML, URL
— XML

— DOM, SAX

— CSS, JavaScript

— SOAP, WSDL, UDDI

— AJAX, others

I NOPE
FOU RE POING
FOUR WORK
O
PROJECTIII]

AJAX

- Asynchronous JavaScript and XML
— Highly interactive web apps
— Examples: Google Maps

|84 4

St 3% 3134 lncaton

Dwactond 70 hove - From hate

l Web Images Grows News Frooge Local™™ mete »
. Tawin e v
COOS € D00 Forbes Ave Prsbush PA (Search] Jevenes
-ﬂl:‘]: 3. Tl rew 10 ot o 2 Y : "li’iu.ac"

Local &3 Prist () Emad e Lisk 10 the paze

- f - - — w | ‘ ' . -

ot N Coitmy e e]
2\\ B Address: i : /
‘ e S000 Forbes Aw . = ~ '5’
Pmsburgh PA 15213 -

Rich Internet Applications (RIA)

- Yet another buzzword without a proper definition
— Basically, make web apps more like desktop GUI
— Many would consider AJAX part of this
— Might include Macromedia Flash, Java applets, ActiveX
- More on pros and cons next time

- Will stick with RIA since not tied to specific technology

Two Kinds of Rich Internet Applications

- Two basic forms (not mutually exclusive)
- #1 — Rich interactions by cleverly manipulating DOM

— EX. http://www.openrico.org/rico/demos.page
— EX. http://dojotoolkit.org

[-}Can't remove me
= node with HTML titl

test
test2
E}-Can‘t add child to me

test
roamrD

Name
Carla
Helga
Ronald

Mike

Rich Internet Applications (RIA)

- Two basic forms (not mutually exclusive)

- #2 — Update content without explicitly reloading
- XMLHttpRequest object in JavaScript
— Can asynchronously request information from a server
— Can load that information into page on-demand (DOM)

XMLHttpRequest Example

Networked RIAs

- Pros
— Smoother and more fluid interaction
— Don’t have to wait for entire page to reload
— Easier to maintain things in context

- Some Issues
— How to bookmark?
— Broken back button?
— Easier to spy on people
— Breaks user model of when data gets transferred (forms)
— How to handle server load? Network latency?

Summary

- The Web Today
— HTTP, HTML, URL
— XML
— DOM, SAX
— CSS, JavaScript
— SOAP, WSDL, UDDI
— AJAX, others

- Reading for next time
— Printed and at beginning of class

— Principled design of the modern Web architecture, by
Fielding and Taylor, ICSE2000
http.//doi.acm.org/10.1145/337180.337228

— Accessible via ACM Digital Library

Extra slides

The Web Tomorrow? — Summary

- Future very hazy

- BETTER NOT
- Lots of opportunities TELL YOu

— Semantic web NOwW
— AJAX/ RIAs
— Customization of web pages

GreaseMonkey

- Customize web presentation on the client-side

- Examples:
— Make all URLs clickable links
— For every book on Amazon, show if your local library has it
— Add a link to Google Maps views to see the nearest
geocaches to the current center of the map
- Basic Idea:

— Site-specific JavaScript which manipulates the contents
of a webpage via the DOM

ChickenFoot

- Research Project at MIT
- Same basic idea as GreaseMonkey, with easier

end-user programming
: C()Ogle Advanced Image Search
— No JavaScript Images
Flad 1osain selated 1o all of the woeds
- Easier page manipulation atet 10 o exact phiase
" " related 10 awy of the words
— go("google.com") met selated 10 the weeds
— enter(“saui") 25 Rt nged ol g ey s
Filetgpes Hetun anly image Hhes formatted as anvy Al
— click("google search") Coléaufon). Bk uodly iruigio o
. ¢ i anain Hedummn images from the sde of doman
o p|Ck(glf) &)hSuldo UNe therng @ Use moderate ftenrg O Use stact fiy

— isbn = find(new TC('number just after isbn'))

Early Web Growth

Logs per week day +

Logs 33 nng week-end O

100000~

EM
1o-__I¢D N
+ O ¥
-+ +

T bt adee Ay i cht srdes A i cht sades b

How is CSS applied?

r=zh Source document is parsed into a DOM tree

e Media type is identified

e Relevant stylesheets obtained

DOM tree annotated with values to every property
1< Formatting structure generated

2«ah Formatting structure presented (rendered)

JavaScript / ECMAScript

Most common scripting language
— Originally supported by Netscape, eventually by |IE
- Typically embedded in HTML page
— Executable computer code within the HTML content
— Interpreted at runtime on the client side
Can be used to dynamically manipulate HTML
— Has access to DOM
— Can react to events (ex. onmouseover)
— Can be used to dynamically place data in the first place
— Often used to validate form data

JavaScript Syntax

- Code written within <script> element

— e.0., <script type="text/javascript">
document.write ("Hello World!")
</script>

— Use src attribute for scripts in external files

— <script type="text/javascript"
src="http://.../global.js">

JavaScript Syntax

- HTML Elements have script-specific event attributes
— e.g., <body onmousedown="whichButton() ">
— e.0., <input type="button" onclick="uncheck()">

- Three important things:
— JavaScript supported on nearly all browsers
— Direct access to the HTML DOM model
- Makes this the language of choice for client-side web
— XMLHttpRequest feature
- Basis of Google Maps and other similar apps

Semantic Web

- Put everything in a machine-understandable format
— Eliminate screen-scraping
— Would allow for faster and more effective searches
— Would allow us to apply logical operators to data

- Basic ldea: Artificial Intelligence meets web and XML

— RDF (Resource Description Framework)
— OWL (Web Ontology Language)

Semantic Web

- RDF (Resource Description Framework)
— Metadata describing content
— Ex. Author, homepage, price, etc
— Primarily a standardization effort

Semantic Web

<?xml version="1.0"7?>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-
rdf-syntax-ns#"
xmlns:cd="http://www.recshop. fake/cd#">

<rdf:Description rdf:about=
"http://www.recshop.fake/cd/Empire Burlesque">
<cd:artist>Bob Dylan</cd:artist>
<cd:country>USA</cd:country>

<cd: company>Columbia</cd: company>
<cd:price>10.90</cd:price>
<cd:year>1985</cd:year>

</rdf:Description>

</rdf :RDF>

Semantic Web

- OWL (Web Ontology Language)

— Lets you formally specify a knowledge domain

— Richer (and more complex!) vocabulary for describing
properties and classes

- Basically first-order predicate logic
- Ex. Uncle is brother-of parent
— Other example features:
- Disjointness
- Cardinality (“exactly one”)
- Equality

Semantic Web

- Some Problems:
— Primarily academic, industry doesn't seem interested
- Industry effort more on web services right now
— Huge amount of effort with (thus far) little benefit
— Example problems don’t seem interesting
- Friend of a Friend

— Not clear how many people need to buy-in before
semantic web gets useful

