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The Big Picture

How desktop Uls work (input / output / arch)

How human abilities affect Ul design

The Web

— Key ideas and technologies
— Some emerging standards

4

— A little bit of history

— Philosophy of web architecture

— Rapid prototyping
— Mobile web

Today
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- The Web Today

— HTTP, HTML, URL

— XML

— DOM, SAX

— CSS, JavaScript

— SOAP, WSDL, UDDI
— AJAX, others
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Hypertext Transfer Protocol (HTTP)

- Standard way of transferring content

- Often done on top of TCP, but doesn’t have to be
— For example, could have HTTP via Bluetooth
— Just requires reliable transport of data



HTTP Request Example

GET /HTTP/1.1
Host: uma.pt

User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.13) Gecko/20060414

Accept:
text/xml,application/xml,application/xhtml+xmi,te
xt/html;q=0.9,text/plain;g=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1ISO-8859-1,utf-8;9=0.7,*;9=0.7

Keep-Alive: 300

Connection: keep-alive




HTTP Request Example

GET /HTTP/1.1
Host: uma.pt

User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.13) Gecko/20060414

Accept:
text/xml,
xt/html;¢

Accept-L

* Request to http://uma.pt

 Text-based protocol (vs binary RPC)

Accept-En * Firstline is the request, everything

Accept-C
Keep-Aliv
Connectio

else Is a header




HTTP Request Example

GET /HTTP/1.1

« HTTP defines some standard methods
« GET, POST, DELETE
« HEAD, PUT, TRACE

* / here is what web page to get

« HTTP/1.1 is the version




HTTP Request Example

Host: uma.pt

* “‘Host” says what web server name
* Added to HTTP1.1 for virtual hosting




HTTP Request Example

User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.7.13) Gecko/20060414

 “User-Agent” is what web browser
* Note that it is trivial to lie here




HTTP Request Example

Accept:
text/xml,application/xml,application/xhtml+xml,te
xt/html;q=0.9,text/plain;q=0.8,image/png,*/*;g=0.5

* “Accept” is what MIME type your
browser can handle
* g-values specify preference
* text/html, image/qgif




HTTP Request Example

Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: 1ISO-8859-1,utf-8;9=0.7,*;9=0.7




HTTP Request Example

» “Keep-Alive” and “Connection” are
optimizations for HTTP1.1

Keep-Alive: 300
Connection: keep-alive




HTTP Request

- Other headers:
— Referer (sic): what web page you were on
— Cookies: maintaining state between transactions

— If-Modified-Since: conditional get

- Easy to view these

- Easy for a proxy to modify headers as well
— For example, hiding browser type



HTTP Response Example

HTTP/1.x 200 OK
Date: Sun, 01 Oct 2006 22:45:16 GMT

Server: Apache/1.3.34 (Unix) mod_pubcookie/3.1.1
pre-betal (CMU-027) mod_ssl/2.8.25
OpenSSL/0.9.6m

Last-Modified: Thu, 21 Nov 2002 15:28:50 GMT
Etag: "385dd9-6ffb-3ddcfbb2"
Accept-Ranges: bytes

Content-Length: 28667

Keep-Alive: timeout=5

Connection: Keep-Alive

Content-Type: image/gif




HTTP Response Example

HTTP/1.x 200 OK

* Version, response code, message
* Response code 200 is “OK”"
* Response code 404 is “not found”




HTTP Response Example

Server: Apache/1.3.34 (Unix) mod_pubcookie/3.1.1
pre-betal (CMU-027) mod_ssl/2.8.25
OpenSSL/0.9.6m

* What server is being used




HTTP Response Example

 How much content is being sent
* What is the MIME type

Content-Length: 28667

Content-Type: image/gif




HTTP Comments

- Simple stateless protocol
— Text-based, easy to inspect, easy for proxies

— Few well-defined methods that can be used for resources
- GET, POST

- Common case of just getting data is relatively basic
. Gets thornier with HTTP 1.1 though

— Lots of hacks to make it work with persistent connections



Hypertext Markup Language (HTML)

- Standard way of representing content
— Original version mixed content with presentation
- Ex. Bold, ltalics, Font
— Older versions relied heavily on tables for layout
— Now, cleaner separation with style sheets

- More about HTML and CSS in a second



Uniform Resource Locator (URL)

- URL is a standard way of addressing content
— URL is a URI (Uniform Resource ldentifier)

- URN is a standard way of naming content
— mailto:java-net@java.sun.com

— news:comp.lang. java
— isbn:096139210x

& URI )
r N
URL I URN
2 i,
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XML

Stands for Extensible Markup Language
— Intended to facilitate data exchange

— Rather than having many ways of representing and
parsing data, create one standard extensible way

Lots of hype, but industry adoption is strong
— Odds are high you will have to deal with XML



XML

Basic idea: Like HTML, but more structured and
with definable tags

<?xml version="1.0"7? encoding="UTF-8" >
<person>
<name type="full">John Doe</name>
<tel type="home">412-555-4444</tel>
<tel type="work">412-268-5555</tel>
<email>johndoe@anon.net</email>
</person>




XML Structure

XML documents have no semantics
— Up to the programs using them
— Often defined by a committee

Structure determined by schema
— Fancy way of saying what tags and values are allowed

Schema #1 — Document Type Definition
— Currently a standard, sort of messy

Schema #2 — XML Schema

— Currently a recommendation, extremely complex



XML Notes

- XML absolutely must be properly formatted
— Not sloppy like HTML

- XHTML is XML-formatted HTML

— Currently recommended

- Subjective opinion about XML
— Basic idea of XML is good
— But doesn’t make easy things easy
— Quickly blowing out of control with too many changes
- XPath, XQuery, XPointer, XSL, XSLT, etc
— Didn’t consult experts in databases



Outline

The Web Today

— HTTP, HTML, URL
— XML

— DOM, SAX

— CSS, JavaScript
— SOAP, WSDL, UDDI
— AJAX, others




Document Object Model (DOM)

- A way of representing parsed HTML (or XML)

- Mostly analogous to interactor tree
— Tree of HTML elements
— Each element has multiple properties

- One easy way to modify web page is to modify DOM
— Find the right element, modify it
— Add an element
— Remove an element
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Document Object Model (DOM)

- Many programming languages have DOM support
— Ex. Java is org.w3c.dom. *

- JavaScript makes it trivial to access DOM
— Built-in variable called document
- EX. document.body, or document.head
— Built-in methods
- document.getElementById()
- document.getElementsByName ()
- document.getElementsByTagName ()



JavaScript and DOM

<div id="dl" name="fname">Div #1</div>
<div id="d2" name="fname">Div #2</div>
<div id="d3">Div #3</div>

- document.getElementById("d1l")
- document.getElementsByName (" fname")
- document.getElementsByTagName ("div")




Document Object Model (DOM)

- Unfortunately, DOM is not 100% cross-platform

— Different browsers and software packages have
different levels of DOM compliance, bugs

- DOM also requires you to parse and load entire
web page into memory
— May be overkill for simple things
— Browser has to do this anyway though



Simple API for XML (SAX)

- Another way of processing web pages (and XML)

- Basic idea:
— Instantiate a SAX Parser
— Give it a handler

— SAX parser incrementally parses web page / xml
one element at a time

— SAX parser makes callback to handler when appropriate



Java Example of SAX

- org.w3c.sax.*

- org.w3c.sax.helpers.DefaultHandler




Simple API for XML (SAX)

Calls startDocument ()

<html>

<body>
Some text and <a href="">a link</a>

</body>

</html>




Simple API for XML (SAX)

/ Calls startElement ("html")

<html>

<body>
Some text and <a href="">a link</a>

</body>

</html>




Simple API for XML (SAX)

<html>
/ Calls startElement ("body")
<body>

Some text and <a href="">a link</a>
</body>
</html>




Simple API for XML (SAX)

Calls characters ()

Some text and <a href="">a link</a>
</body>
</html>




Simple API for XML (SAX)

<html> Calls startElement ("a")
<body> *

Some text and <a href="">a link</a>
</body>

</html>




Simple API for XML (SAX)

<html> Calls characters ()
<body> *

Some text and <a href="">a link</a>
</body>

</html>




Simple API for XML (SAX)

<html> Calls endElement ("a")
<body> *

Some text and <a href="">a link</a>
</body>

</html>




Simple API for XML (SAX)

- SAX not built into JavaScript
- SAX has small memory footprint, in theory faster

- SAX API highly un-object-oriented

— Passes lots of character arrays

— Meant to be a uniform API across multiple
programming languages

- When to use?
— Simple stateless transformations, ex. remove banner ads



Recap

- Two basic ways of handling HTML (and XML):
- DOM

— Parse document into a tree
— Manipulate tree as needed
— More flexible, but entire document in memory

- SAX
— As you parse, issue callbacks
— Only small part of document in memory at any time
— Simple and fast, but non-object-oriented API



Administrivia

- P3 Progress?
— Use of color?
— Mapping / layout / grouping?
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Why Cascading Style Sheets?

Developed by Hakon Lie and Bert Bos in mid 1990s
Basic idea: separate content from presentation

HTML not meant to support styling information

— But browsers started supporting inline style changes
(bold, italics, centered, etc)

— Why is this a problem?

Inline styling information is problematic
— Difficult to change if in multiple places

— Harder to make consistent

— No support for different display formats (audio, mobile)
— Bloats pages



Why Cascading Style Sheets?

- Specify content in one file (HTML)
- Specify presentation in another (CSS)



Example Use of CSS

- Can specify styles for all of tags of a type

P {
font-family: "Garamond'", serif;

}

h2 {
font-size: 110%;
color: red;

background: white;




Example Use of CSS

Can specify styles for a class of tags

.note {
color: red;
background: yellow;
font-weight: bold;

<div class="note">Div #1</div>
<div class="note">Div #2</div>



Example Use of CSS

Can specify styles for a specific id

#homeAddress ({
color: black;
font-weight: bold;

<div id="homeAddress'">blah blah</div>



CSS Notes

- Note: different syntax than XML

— Would have been in XML format except didn't exist then

- Can specify how to apply a style many ways:
— By tag type
— By class
— By id
— By arbitrary attribute
— By proximity



CSS Notes

Can provide several style sheet options
— Give titles to each style sheet
— One preferred (default) style, the rest are alternates
— EX. An online magazine
.+ Screen
- Aural, braille, embossed
. Print

Makes it easy to switch visual appearance



Cascading?

- Multiple styles can be combined

— In theory, can be a CSS associated with
site, page, browser, user

— Have some way of handling conflicts

- In practice, cascading hasn'’t taken off
— Usually web site specifies only style sheet




CSS Notes

- Mostly integrated with JavaScript

— element.style.borderColor

- Compatibility issues (like JavaScript)
— Makes it a real pain to support multiple browsers

. Style in DOM reflects fully processed style sheet
— Led to interesting history stealing hack

— http://jeremiahgrossman.blogspot.com/2006/08/i-know-
where-youve-been.html

— Create a list of links to popular sites
— lterate through those links
— Keep links whose color is “visited”




Cascading Style Sheets

- Good for general maintenance

— Good principle of large-scale systems is to
factor out common things

- Good for accessibility
— Can apply an appropriate style sheet
— Don’t have to wade through tables for layout

- Good for mobile web
— Almost everything good for accessibility is good for mobile
— However, style sheets haven't taken off for mobile
— Typically, re-target key parts of web site for mobile



Stepping Back, Big Picture

— XHTML - Content

HTML ——| CSS - Presentation

- JavaScript - Behavior

- Sort of like evolution of Model-View-Controller



2 Minute Break
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Web Services

- Huge standardization and interoperability effort

- Basic idea: standard formats, protocols, and
programming model for accessing a service

— EX. Google search code.google.com
— EXx. Ebay search developer.ebay.com
— Ex. Amazon book search aws.amazon.com

- Works for all programming languages
— Just need to send a formatted message to the right place
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Web Services Acronyms

- SOAP
- WSDL
- UDDI



Simple Object Access Protocol (SOAP)

Protocol for message exchange
— Specifies how to call a remote service
— Can pass some XML objects

— Can return some XML objects
— RPC over HTTP using XML

Similar to Java RMI or CORBA RMI




“Simple” SOAP Request

<soap:Envelope xmlns:soap =
"http://schemas.xmlsoap.org/soap/envelope/">

</soap:Body>

</soap:Envelope>



“Simple” SOAP Response

<soap:Envelope xmlns:soap="http://... ">
<soap:Body>

<getProdDetailsResponse xmlns =
"http://warehouse.example.com/ws">

<getProductDetailsResult>
<productName>Toptimate 3-Piece Set

</productName>
<productId>827635</productId>
<description>

3-Piece luggage set Polyester

</description>

<price>96.50</price>

<inStock>true</inStock>
</getProductDetailsResult>

</getProductDetailsResponse>
</soap:Body>
</soap:Envelope>



“Simple” SOAP Response

<getProductDetailsResult>

<productName>
Toptimate 3-Piece Set
</productName>

<productId>827635</productId>

<description>
3-Piece luggage set Polyester
</description>

<price>96.50</price>
<inStock>true</inStock>

</getProductDetailsResult>




SOAP Notes

- Somewhat messy and confusing, but good tools
will handle ugly details for you transparently



Web Services Description Language (WSDL)

Problem: How to know what services a web site
offers? And what data to send via SOAP?

- Solution: Describe web service’s APl using WSDL
— EXx. in Java, we have:
- Interfaces for specifying APIs
- public int getValue (char ch)
— WSDL does the equivalent



Web Services Description Language (WSDL)

- WSDL document describes:
— Data formats
— Valid messages
— Ports, a collection of operations you can do (like library)
— Each port has a binding
- Binding is how to contact (ex. http)
- Binding is how to format messages (what encoding)



Web Services Description Language (WSDL)

Example:
- http://api.google.com/GoogleSearch.wsdl

- Like SOAP, somewhat messy and confusing, but
good tools handle these for you



Universal Description,
Discovery, & Integration (UDDI)

Problem: How to find WSDLs?
Solution: A universal registry of WSDL services

Let businesses list services they provide

— While pages - real address and contact information
— Yellow pages - industrial categorization
— Green pages - technical information on exposed services

Originally envisioned to be one global UDDI registry
— Could dynamically bind to, ex. credit card authentication
— In practice, UDDI for a company

- Much easier integration



Web Services Recap

- SOAP Service
: Broker

— Protocol for exchanging UDDil
messages (request /
response) ;
. WSDL o

WSDL WSDL
— A description of the web K ‘

service’s AP ‘_@ m
. UDDI ~l—

: : i ervice
— How to find available Rﬁ:{,".,:?e, vam,

web services




Will Web Services Take Off?

- Provides an explicit way of opening up a system
— Consider alternative, screen-scraping Amazon prices

- Strong interoperability
- Early buy-in from Google, EBay, Amazon, others

- Conjecture: very likely to be adopted, but only
incremental improvement on top of existing web



Outline

The Web Today

— HTTP, HTML, URL
— XML

— DOM, SAX

— CSS, JavaScript

— SOAP, WSDL, UDDI

— AJAX, others

I NOPE
FOU RE POING
FOUR WORK
O
PROJECTIII]



AJAX

- Asynchronous JavaScript and XML
— Highly interactive web apps
— Examples: Google Maps
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Rich Internet Applications (RIA)

- Yet another buzzword without a proper definition
— Basically, make web apps more like desktop GUI
— Many would consider AJAX part of this
— Might include Macromedia Flash, Java applets, ActiveX
- More on pros and cons next time

- Will stick with RIA since not tied to specific technology



Two Kinds of Rich Internet Applications

- Two basic forms (not mutually exclusive)
- #1 — Rich interactions by cleverly manipulating DOM

— EX. http://www.openrico.org/rico/demos.page
— EX. http://dojotoolkit.org

[-}Can't remove me
= node with HTML titl

test
test2
E}-Can‘t add child to me

test
roamrD

Name
Carla
Helga
Ronald

Mike



Rich Internet Applications (RIA)

- Two basic forms (not mutually exclusive)

- #2 — Update content without explicitly reloading
- XMLHttpRequest object in JavaScript
— Can asynchronously request information from a server
— Can load that information into page on-demand (DOM)



XMLHttpRequest Example




Networked RIAs

- Pros
— Smoother and more fluid interaction
— Don’t have to wait for entire page to reload
— Easier to maintain things in context

- Some Issues
— How to bookmark?
— Broken back button?
— Easier to spy on people
— Breaks user model of when data gets transferred (forms)
— How to handle server load? Network latency?



Summary

- The Web Today
— HTTP, HTML, URL
— XML
— DOM, SAX
— CSS, JavaScript
— SOAP, WSDL, UDDI
— AJAX, others

- Reading for next time
— Printed and at beginning of class

— Principled design of the modern Web architecture, by
Fielding and Taylor, ICSE2000
http.//doi.acm.org/10.1145/337180.337228

— Accessible via ACM Digital Library




Extra slides




The Web Tomorrow? — Summary

- Future very hazy

- BETTER NOT
- Lots of opportunities TELL YOu

— Semantic web NOwW
— AJAX/ RIAs
— Customization of web pages




GreaseMonkey

- Customize web presentation on the client-side

- Examples:
— Make all URLs clickable links
— For every book on Amazon, show if your local library has it
— Add a link to Google Maps views to see the nearest
geocaches to the current center of the map
- Basic Idea:

— Site-specific JavaScript which manipulates the contents
of a webpage via the DOM



ChickenFoot

- Research Project at MIT
- Same basic idea as GreaseMonkey, with easier

end-user programming
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Early Web Growth
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How is CSS applied?

r=zh Source document is parsed into a DOM tree

e Media type is identified

e Relevant stylesheets obtained

DOM tree annotated with values to every property
1< Formatting structure generated

2«ah Formatting structure presented (rendered)



JavaScript / ECMAScript

Most common scripting language
— Originally supported by Netscape, eventually by |IE
- Typically embedded in HTML page
— Executable computer code within the HTML content
— Interpreted at runtime on the client side
Can be used to dynamically manipulate HTML
— Has access to DOM
— Can react to events (ex. onmouseover)
— Can be used to dynamically place data in the first place
— Often used to validate form data



JavaScript Syntax

- Code written within <script> element

— e.0., <script type="text/javascript">
document.write ("Hello World!")
</script>

— Use src attribute for scripts in external files

— <script type="text/javascript"
src="http://.../global.js">



JavaScript Syntax

- HTML Elements have script-specific event attributes
— e.g., <body onmousedown="whichButton() ">
— e.0., <input type="button" onclick="uncheck()">

- Three important things:
— JavaScript supported on nearly all browsers
— Direct access to the HTML DOM model
- Makes this the language of choice for client-side web
— XMLHttpRequest feature
- Basis of Google Maps and other similar apps



Semantic Web

- Put everything in a machine-understandable format
— Eliminate screen-scraping
— Would allow for faster and more effective searches
— Would allow us to apply logical operators to data

- Basic ldea: Artificial Intelligence meets web and XML

— RDF (Resource Description Framework)
— OWL (Web Ontology Language)



Semantic Web

- RDF (Resource Description Framework)
— Metadata describing content
— Ex. Author, homepage, price, etc
— Primarily a standardization effort



Semantic Web

<?xml version="1.0"7?>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-
rdf-syntax-ns#"
xmlns:cd="http://www.recshop. fake/cd#">

<rdf:Description rdf:about=
"http://www.recshop.fake/cd/Empire Burlesque">
<cd:artist>Bob Dylan</cd:artist>
<cd:country>USA</cd:country>

<cd: company>Columbia</cd: company>
<cd:price>10.90</cd:price>
<cd:year>1985</cd:year>

</rdf:Description>

</rdf :RDF>



Semantic Web

- OWL (Web Ontology Language)

— Lets you formally specify a knowledge domain

— Richer (and more complex!) vocabulary for describing
properties and classes

- Basically first-order predicate logic
- Ex. Uncle is brother-of parent
— Other example features:
- Disjointness
- Cardinality (“exactly one”)
- Equality



Semantic Web

- Some Problems:
— Primarily academic, industry doesn't seem interested
- Industry effort more on web services right now
— Huge amount of effort with (thus far) little benefit
— Example problems don’t seem interesting
- Friend of a Friend

— Not clear how many people need to buy-in before
semantic web gets useful



