GUI Object Level Architectures

Human-Computer Interaction Institute

Recap

Lots of Input Devices

— Basic input devices (keyboard, mouse, buttons, valuators)
— Exotic input devices (3D Input, Gloves, Crosspads)

— Research input devices (Peephole display, speech, touch)

Recap

- Handling input
— Predefine all kinds of devices (too rigid, didn't work too well)
— Instead, organize everything as event or sampled devices
— Handle everything in software as events

_>‘mﬁtled - Paint™ window

— [ienu Bar
Mouse — File
Events — Edit
Software —
— Paint Toolbar
Keyboard e
Software — Color Palette
— Scrollable Panel

Horizontal Scrollbar
Vertical Scrollbar
Crawing Canvas

— -

Today

- Object-level architectures
— Design patterns for GUIs
— Model-View-Controller
— Pluggable Look and Feel
— Undo / Redo

Internal Organization of Widgets

- GUI widgets organized Model-View-Controller (MVC)

— Basic idea: split widget into three separate objects
— Each handles different aspect of widget

view controller

Model-View-Controller

- Model handles core functionality and data

- Micro-level (internal to widget)
— Scrollbar state
— Checkbox state
— What cell in table is currently highlighted

I RN

- Macro-level (application)
— Table data
— Content in a document
— Image in paint program

e e, S S I el

D L T T IE s R

view controller

Model-View-Controller

- Model provides:
— methods to edit data, which Controller can call

— methods to access state, which View and Controller
can request

- Model has registry of dependent Views
to notify on data changes

- In Swing, listeners stored here

view controller

Model-View-Controller

- Model examples:
— text editor: model is text string
— slider: model is an integer

— spreadsheet: collection of values related by
functional constraints

controller

Model-View-Controller

- View handles how the widget appears
— Handles display of information in Model

— Handles rendering

- View is informed when Model changed
— View requests relevant model information

— View arranges to update screen
- Declare damaged areas
- Redraw when requested

e,

D o

[, e

controller

Model-View-Controller

- View Examples:
— Slider: text-field, temperature gauge
— Spreadsheet can have multiple views of same model
- Tabular representation
- Bar chart
- Histogram

view controller

Model-View-Controller

- Controller handles widget input
— Handles all events as needed
— Calls appropriate methods in Model to change state

view controller

Model-View-Controller

- Controller handles widget input
— Handles all events as needed

- Controller Examples:

— Transforms keyboard shortcuts to commands

— Transforms mouse input to commands

L

D L T e T S

[, e

controller

Model-View-Controller Recap

- Split up a widget into three basic parts
- Change-propagation mechanism ensures
consistency between Model and Ul

— Model tells View when it's been updated
— Controller tells View and Model when mouse click happens

view controller

MVC motivation

Q: Why MVC?
- A Flexibility and robustness:

— Same info can be shown in different windows

- Changes to underlying data should be reflected
quickly everywhere (spreadsheet)

— Changes to Ul should be easy, even at runtime

- Different “look and feel” should not affect
functional core (separate front-end from back-end)

— Easier to program, forced you to be honest, and had
cleaner semantics

MVC Dynamics

1. User clicks on widget

2. Event gets dispatched to
right widget

3. Controller portion handles
the event

4. Controller portion may tell
View to look selected or

pressed

MVC Dynamics

5. Controller figures out what
method in Model to call to
change its state

6. Model changes its internal

state

/. Model generates higher-
level events (ex. action
performed) and sends to

any listeners

MVC Dynamics

8. Model notifies all
dependent Views that data

has changed

9. View requests from Model

current data values (might
be part of notification)

10. View requests redraw if
needed

View + Controller linking

In practice, View and Controller implemented together
— Controller almost always has to “talk to” view

— Need geometry to interpret input (e.g., picking)

— Need to do feedback

- As aresult, MVC is usually implemented as M-VC

MVC in Java

Component | Model Interface Model Type
JButton ButtonModel GUI
JCheckBox ButtonModel GUl/data
JRadioButton | ButtonModel GUl/data
JComboBox |ComboBoxModel data
JSlider BoundedRangeModel |GUl/data
JTextArea/ Document data

JTextField

Digression

- | Model View Controller perhaps most useful
design pattern ever

— Micro-scale, widget level

— Macro-scale, entire system architecture level

- Other variants of MVC:

— Separate content from presentation

— Separate front-end from back-end

— Separate business logic from everything else /,
g

- May seem like more work upfront
— But keeps you honest, cleaner semantics, cleaner APIs

Two Variations of MVC in Java

Java peers (AWT)
Java pluggable looks and feels (Swing)

Both address same problem:
— Java is supposed to be cross-platform

— However, different GUIs have different looks and feels
- Mac, MS Windows, Motif, GTK, etc

Design constraints

— Don’t want to force developers to rewrite apps for platforms
— Don’t want different APIs for different platforms

Java Peers e

. Solution #1: 1
— Link Java widget set to native platform e A
- Java button peered with native button P70
- Java scrollbar peered with native scrollbar | e
— Java just provides a thin layer of abstraction " .
— Each Java runtime needs to support each peer -I-
for each platform
-".. Fgfoum
(oo
Natwe)

- Implications
— All rendering, event handling, etc happens at OS level -

~

Java Peers

- Advantages:
— Looks like native platform (because it is!)
— Fast, took only a few weeks to do

- Weaknesses:
— Inconsistent looks and feels
- Developers unsure how app will look and perform
- Write Once Test Everywhere
— Source code not as useful (because of reliance on OS)

Java Pluggable Look and Feel

- Solution #2:

— Developers can use basic widget set provided by Swing

— Can also change look and feel of widget set as needed
- Pluggable look and feel

- Rendered entirely in Java

— So app happens to look like a “native” app
- |Implications

— All rendering, event handling, etc happens in Java

k=4 Windows Look and Feel [M[=] E3 I =1

Layer 5 = I
,//
7%
o
o
-

,';-: 0 Internal frame 1 F1H
1 |lLayer s

-~

=

¥
. L

Java Pluggable Look and Feel

Layers j
N

- Internal frame 1
lLayer S

Java Pluggable Look and Feel

- Some PL&Fs with Java
— Basic, Ocean, Metal, Synth

- Some commercial and open-source ones
— Alloy and Looks

JPiogressBar | JSMOe | JSpowen

-r

JBeton | JToggheBuman | JRadwBution

o= 0 Fiaces

f’.‘u'q "OYN |_‘:':'~Ju — I 8"'4“ I
s (M08 C

(427-478C)
|3 POSCRRATE: | e ures 342 M08 C

[t Aupusing (354.4:
| feame ee322)

| -frn'.m'au_‘)io 1037 3
»

'

ot Gavesteny
e Dock of Mors D'Oesuvres and Canapes

Chel's Bock. of Farmulas, ielde, and Some Ao Scheed 500
Nobodaddy's Ovkdren: & Triogy (Schwed, ero, Selectors. . Ao Sdwed, ot o $1396
The Collected Rores of Amo Schosd [Schoed, Amo, Sele... Amo Schesd, ot 1000
Rk Onlogs 11 Everwn) Progrovs b Schomd_ ot 8 31296
Schood for Aehaiats (Groen Irteger: EL-EAHANT 3) Ao Schend, ot o §16.95

COEE———

Collected Sovellax Collected Larky Fiction 1949 1964

Aero Schee®, Jobe €. Woods
Ouboy fechove Pr
Nowerder, 1794

T80 196AT000K
229

0 2900 Xvodes ooy

Java Pluggable Look and Feel

- Advantages
— Can test on a single machine (just change PL&F)
— Can get reliable look and feel (all in Java vs OS)
— Consistent set of widgets (ex. JTable)
— Easier to do “skinning”

- Weaknesses:
— Have to create new PL&F on every update
- Java will always lag somewhat
— Only useful if new widgets have a PL&F provided

Large Class Exercise

- Suppose you want to “sketchify” your GUI
— Fun look and feel, or for prototyping

— | Pros [and cons| for sketchifying at each layer?

— Best layer to do this?

Discuss in groups of 3 for ~8 minutes

3 PRY MG
3 e e e Ve o)

~ N~~~ ! @j

— ——

I NAYe RS ’ Ar‘"—c.w "t

| D HRITE AETLE " g

|0 6o HBNG - e

L=

| Pixels
i (Frame buffer, images)

—

Large Class Exercise

- Object Layer Pros

— Simple Pluggable Look and Feel, trivial to change

- Object Layer Cons
— Doesn’t work for custom widgets
— Hard to do text o

Large Class Exercise

- Stroke Layer Pros

— Modify Graphics2D to SketchyGraphics2D
— drawLine() implemented by drawSketchyLine()

— Works for all things rendered

- Stroke Layer Cons
— Won’t work for images well
— Text might be hard to read
- Custom font?

| [Jtoggle |

U Logg e |

l apply |

apply

u
width CRC)

[textennd |

';‘T‘ll

Large Class Exercise

- Pixel Layer Pros
— No semantics needed
— Works for all things rendered (including images)

- Pixel Layer Cons
— Hard to implement (need a good noise function)

— Hard to make it look good e G)

Non-Photorealistic Rendering (NPR)

- See http://www.red3d.com/cwr/npr/

Non-Photorealistic Rendering (NPR)

See http://lwww.red3d.com/cwr/npr/

Non-Photorealistic Rendering (NPR)

- See http://www.red3d.com/cwr/npr/

Non-Photorealistic Rendering (NPR)

- Notepad Invaders

Undo / Redo

- How to support undo and redo in apps?

¥ untithed - Paim
Bl Cdt Yiew [nage Colors teb

wel \

s 8 s 1 <l
™~ A _.‘ {\'
\ 2 %

oa [-
o0

m_\

R

€

s BFEEEEEEIEEEEE
MErEEFEEmrEas

For Mok, < Hekp Topacs on the Help Merw

R T

e £t Yew [nage Cokrs teb
7 e
saly [
;A 4
™ A oty
N H
oa i -
oo
i3
i
s BFEEREEEIEEEEE
MMAerSErFER Braes
For Mok, Sk Help Topas on the Help Merw

Draw

¥ untithed - Paim

0, 3|

€

s BFEEEEEEIEEEEE
MErEEFEEmrEas

For Mok, < Hekp Topacs on the Help Merw

Undo

Approach #1: Save All State

- Save all state as you go
— EX. save entire state of canvas on every action
— To undo, just throw away current canvas and go backwards

- Pros (7
— Relatively easy to implement 2; h (.. s
. Cons
— Lots of copying for every action done ST

— Lots of memory required

Approach #2: Save Diffs

- Same basic idea as previous slide, but finer grained
— Rather than saving complete state each time, save diffs

- | Command objects
— Encapsulate all commands as Command objects

— Two methods:
- execute ()

- undo ()

Command Objects — Example

i EE8
e o
Sl <
S 1 T
\ 2 i : 'za
D%

Command o

Class Bl aal
DrawCommand CutCommand PasteCommand

[

FillCommand BrushCommand

Command Queue

Single queue that contains all Commands executed
— Methods undo () and redo ()

l

Paste Brush Brush Fill Cut Brush
Command|Command|{Command|Command|Command|Command

. >
Time

To undo, just go backwards
To redo, just go forwards

Advantages of Command Objects

- (Good reuse of code

— Menu, keyboard shortcuts, GUI widgets can all point to
same Command

— Reduces copy-and-paste of code
— (Level of indirection)
- Easy to Enable / Disable commands
— Enable / Disable in one place only (rather than multiple)
— (Need a way of messaging views to update selves)
- Remote execution
— Remote client just sends Commands

Advantages of Command Objects

- Macros easy to implement
— Just have a MacroCommand that contains Commands

- Logging

— Easy to log user actions (and analyze)

Java Swing

- Java does not have explicit Command objects

javax.swing.Action

— Think of it as execute () without undo ()
— Ilsan ActionListener

— Can contain listeners (for updates to state)
— Single point for menus, GUI widgets, etc

— Easily linked to keyboard short cuts

Java Swing

- Also see javax.swing.undo. *

Objects with state implement StateEditable
— storeState () and restoreState ()

Edits implement UndoableEdit

— undo (), redo (), isSignificant()

- UndoManager stores UndoableEdits
— Like the command queue

Java Swing

- A little more structured than standard Command
— Different programming model, no explicit execute ()
- Edits happen “elsewhere” in program

- UndoManager and friends just manage state values and
changes rather than executing code

Design Issues for Command Objects

- | Requires entire system buy-in
— All commands have to be implemented this way for it to work
— Difficult to modify existing system to use command objects

- | Hard to get right
— Have to remember to capture ALL state in execute ()
— Have to remember to undo ALL state for undo ()

— Forgetting anything can be disastrous

- Undo / Redo size
— Can’t be unlimited
— Snapshot (ex. on save)

Design Issues for Command Objects

. Granularity of a Command
— Word processor useless with single char Commands
— Need time-based approach to coalesce things together

- Can’t easily undo some things
— Open file, save file, launch rocket

Approach #3: Just Redo it All

Just redo all commands from the beginning

l

Paste Brush Brush Fill Cut Brush
Command|Command|{Command|Command|Command|Command

_ >
Time

Easy to implement
— Only really need execute (), not undo ()

— Simpler code base (again, undo can be hard to get right)
— Periodically snapshot state and save to disk (like databases)

Novel Use of Command Objects

M
-
e R fotls Wi
oTeat Atof cewat St T
“res Neowe o v i Sl pervet AtoFoenat As You Type
The Crystal demo text editor allows
multi-font typing. stv/cr on paragraphs
and other features copied from Microsoft | Corvect TWo INtse Cagas
WOfd ‘ v Capitalize Pt lotter of sectercm

LA ahie Fe sl etley of tabde ool v Corvelt levbowd setty g

Show At oCorrect Opbiors bauttors

can Sype uss dee with any other 1o adtor Why s
thes bald? T Capttalize nares of deve

-~
L Lol Sl Oder s ctade oF CAPS LOCK by

| Raghace bt 8 you bype

bopdy e MEh

¢ Wiry was dida’t auto cerrect “Tel™ to "Thw™ executed? £
e

3 . . L - o o >
Why was didn’t anto-correct “Teh™ 10 “The" sxrcuted! pomaticaly Use Suoosstions from the soeling chackes

<

The auto-comnect prefaence wasr desablad MNilo cofrect 'was

el becaure yoi cOCkad the lngthgttad comrponerd

Hofresh : l oe i

Novel Use of Command Objects

- Answering Why and Why Not Questions in User
Interfaces

- Uses Command objects to tell what happened
recently where
— Some “why” and “why not” questions generated from these

Extensions to Commands
— Dependencies (ex. Properties like Auto-correct)

Summary

- Input Models
— Higher level events
— Dispatch

- Object Level Architectures
— Model View Controller
— Pluggable Look and Feel
— Undo / Redo

