
GUI Object Level Architectures



Recap

• Lots of Input Devices

– Basic input devices (keyboard, mouse, buttons, valuators)

– Exotic input devices (3D Input, Gloves, Crosspads)

– Research input devices (Peephole display, speech, touch)



Recap

• Handling input

– Predefine all kinds of devices (too rigid, didn’t work too well)

– Instead, organize everything as event or sampled devices

– Handle everything in software as events

Mouse

Software
Events

Keyboard

Software



Today

• Object-level architectures

– Design patterns for GUIs

– Model-View-Controller

– Pluggable Look and Feel

– Undo / Redo



Internal Organization of Widgets

• GUI widgets organized Model-View-Controller (MVC)

– Basic idea: split widget into three separate objects

– Each handles different aspect of widget



Model-View-Controller

• Model handles core functionality and data

• Micro-level (internal to widget)

– Scrollbar state

– Checkbox state

– What cell in table is currently highlighted

• Macro-level (application)

– Table data

– Content in a document

– Image in paint program



Model-View-Controller

• Model provides:

– methods to edit data, which Controller can call

– methods to access state, which View and Controller

can request

• Model has registry of dependent Views

to notify on data changes

• In Swing, listeners stored here



Model-View-Controller

• Model examples:

– text editor: model is text string

– slider: model is an integer

– spreadsheet: collection of values related by

functional constraints



Model-View-Controller

• View handles how the widget appears

– Handles display of information in Model

– Handles rendering

• View is informed when Model changed

– View requests relevant model information

– View arranges to update screen

• Declare damaged areas

• Redraw when requested



Model-View-Controller

• View Examples:

– Slider: text-field, temperature gauge

– Spreadsheet can have multiple views of same model

• Tabular representation

• Bar chart

• Histogram



Model-View-Controller

• Controller handles widget input

– Handles all events as needed

– Calls appropriate methods in Model to change state



Model-View-Controller

• Controller handles widget input

– Handles all events as needed

• Controller Examples:

– Transforms keyboard shortcuts to commands

– Transforms mouse input to commands



Model-View-Controller Recap

• Split up a widget into three basic parts

• Change-propagation mechanism ensures

consistency between Model and UI

– Model tells View when it’s been updated

– Controller tells View and Model when mouse click happens



MVC motivation

• Q: Why MVC?

• A: Flexibility and robustness:

– Same info can be shown in different windows

• Changes to underlying data should be reflected

quickly everywhere (spreadsheet)

– Changes to UI should be easy, even at runtime

• Different “look and feel” should not affect

functional core (separate front-end from back-end)

– Easier to program, forced you to be honest, and had

cleaner semantics



MVC Dynamics

1. User clicks on widget

2. Event gets dispatched to

right widget

3. Controller portion handles

the event

4. Controller portion may tell

View to look selected or

pressed C

V

M



MVC Dynamics

5. Controller figures out what

method in Model to call to

change its state

6. Model changes its internal

state

7. Model generates higher-

level events (ex. action

performed) and sends to

any listeners
C

V

M



MVC Dynamics

8. Model notifies all

dependent Views that data

has changed

9. View requests from Model

current data values (might

be part of notification)

10. View requests redraw if

needed
C

V

M



View + Controller linking

• In practice, View and Controller implemented together

– Controller almost always has to “talk to” view

– Need geometry to interpret input (e.g., picking)

– Need to do feedback

• As a result, MVC is usually implemented as M-VC



MVC in Java

dataDocumentJTextArea/

JTextField

GUI/dataBoundedRangeModelJSlider

dataComboBoxModelJComboBox

GUI/dataButtonModelJRadioButton

GUI/dataButtonModelJCheckBox

GUIButtonModelJButton

Model TypeModel InterfaceComponent



Digression

• Model View Controller perhaps most useful

design pattern ever

– Micro-scale, widget level

– Macro-scale, entire system architecture level

• Other variants of MVC:

– Separate content from presentation

– Separate front-end from back-end

– Separate business logic from everything else

• May seem like more work upfront

– But keeps you honest, cleaner semantics, cleaner APIs



Two Variations of MVC in Java

• Java peers (AWT)

• Java pluggable looks and feels (Swing)

• Both address same problem:
– Java is supposed to be cross-platform

– However, different GUIs have different looks and feels

• Mac, MS Windows, Motif, GTK, etc

• Design constraints
– Don’t want to force developers to rewrite apps for platforms

– Don’t want different APIs for different platforms



Java Peers

• Solution #1:

– Link Java widget set to native platform

• Java button peered with native button

• Java scrollbar peered with native scrollbar

– Java just provides a thin layer of abstraction

– Each Java runtime needs to support each peer

for each platform

• Implications

– All rendering, event handling, etc happens at OS level



Java Peers

• Advantages:

– Looks like native platform (because it is!)

– Fast, took only a few weeks to do

• Weaknesses:

– Inconsistent looks and feels

• Developers unsure how app will look and perform

• Write Once Test Everywhere

– Source code not as useful (because of reliance on OS)



Java Pluggable Look and Feel

• Solution #2:

– Developers can use basic widget set provided by Swing

– Can also change look and feel of widget set as needed

• Pluggable look and feel

• Rendered entirely in Java

– So app happens to look like a “native” app

• Implications

– All rendering, event handling, etc happens in Java



Java Pluggable Look and Feel



Java Pluggable Look and Feel

• Some PL&Fs with Java

– Basic, Ocean, Metal, Synth

• Some commercial and open-source ones

– Alloy and Looks



Java Pluggable Look and Feel

• Advantages

– Can test on a single machine (just change PL&F)

– Can get reliable look and feel (all in Java vs OS)

– Consistent set of widgets (ex. JTable)

– Easier to do “skinning”

• Weaknesses:

– Have to create new PL&F on every update

• Java will always lag somewhat

– Only useful if new widgets have a PL&F provided



Large Class Exercise

• Suppose you want to “sketchify” your GUI

– Fun look and feel, or for prototyping

– Pros and cons for sketchifying at each layer?

– Best layer to do this?

• Discuss in groups of 3 for ~8 minutes

Pixels
(Frame buffer, images)

Strokes
(Lines, curves, path models, fonts)

Objects
(Widgets, Retained Object Model)



Large Class Exercise

• Object Layer Pros

– Simple Pluggable Look and Feel, trivial to change

• Object Layer Cons

– Doesn’t work for custom widgets

– Hard to do text



Large Class Exercise

• Stroke Layer Pros

– Modify Graphics2D to SketchyGraphics2D

– drawLine() implemented by drawSketchyLine()

– Works for all things rendered

• Stroke Layer Cons

– Won’t work for images well

– Text might be hard to read

• Custom font?



Large Class Exercise

• Pixel Layer Pros

– No semantics needed

– Works for all things rendered (including images)

• Pixel Layer Cons

– Hard to implement (need a good noise function)

– Hard to make it look good



Non-Photorealistic Rendering (NPR)

• See http://www.red3d.com/cwr/npr/



Non-Photorealistic Rendering (NPR)

• See http://www.red3d.com/cwr/npr/



Non-Photorealistic Rendering (NPR)

• See http://www.red3d.com/cwr/npr/



Non-Photorealistic Rendering (NPR)

• Notepad Invaders



Undo / Redo

• How to support undo and redo in apps?

Draw Undo



Approach #1: Save All State

• Save all state as you go

– Ex. save entire state of canvas on every action

– To undo, just throw away current canvas and go backwards

• Pros

– Relatively easy to implement

• Cons

– Lots of copying for every action done

– Lots of memory required



Approach #2: Save Diffs

• Same basic idea as previous slide, but finer grained

– Rather than saving complete state each time, save diffs

• Command objects

– Encapsulate all commands as Command objects

– Two methods:

• execute()

• undo()



Command Objects – Example

Command

Class

DrawCommand CutCommand PasteCommand

BrushCommandFillCommand …



Command Queue

• Single queue that contains all Commands executed

– Methods undo() and redo()

• To undo, just go backwards

• To redo, just go forwards

Paste

Command

Brush

Command

Brush

Command

Fill

Command

Cut

Command

Brush

Command

Time



Advantages of Command Objects

• Good reuse of code

– Menu, keyboard shortcuts, GUI widgets can all point to

same Command

– Reduces copy-and-paste of code

– (Level of indirection)

• Easy to Enable / Disable commands

– Enable / Disable in one place only (rather than multiple)

– (Need a way of messaging views to update selves)

• Remote execution

– Remote client just sends Commands



Advantages of Command Objects

• Macros easy to implement

– Just have a MacroCommand that contains Commands

• Logging

– Easy to log user actions (and analyze)



Java Swing

• Java does not have explicit Command objects

• javax.swing.Action

– Think of it as execute() without undo()

– Is an ActionListener

– Can contain listeners (for updates to state)

– Single point for menus, GUI widgets, etc

– Easily linked to keyboard short cuts



Java Swing

• Also see javax.swing.undo.*

• Objects with state implement StateEditable

– storeState() and restoreState()

• Edits implement UndoableEdit

– undo(), redo(), isSignificant()

• UndoManager stores UndoableEdits

– Like the command queue



Java Swing

• A little more structured than standard Command

– Different programming model, no explicit execute()

• Edits happen “elsewhere” in program

– UndoManager and friends just manage state values and

changes rather than executing code



Design Issues for Command Objects

• Requires entire system buy-in

– All commands have to be implemented this way for it to work

– Difficult to modify existing system to use command objects

• Hard to get right

– Have to remember to capture ALL state in execute()

– Have to remember to undo ALL state for undo()

– Forgetting anything can be disastrous

• Undo / Redo size

– Can’t be unlimited

– Snapshot (ex. on save)



Design Issues for Command Objects

• Granularity of a Command

– Word processor useless with single char Commands

– Need time-based approach to coalesce things together

• Can’t easily undo some things

– Open file, save file, launch rocket



Approach #3: Just Redo it All

• Just redo all commands from the beginning

• Easy to implement

– Only really need execute(), not undo()

– Simpler code base (again, undo can be hard to get right)

– Periodically snapshot state and save to disk (like databases)

Paste

Command

Brush

Command

Brush

Command

Fill

Command

Cut

Command

Brush

Command

Time



Novel Use of Command Objects



Novel Use of Command Objects

• Answering Why and Why Not Questions in User

Interfaces

• Uses Command objects to tell what happened

recently where

– Some “why” and “why not” questions generated from these

• Extensions to Commands

– Dependencies (ex. Properties like Auto-correct)



Summary

• Input Models

– Higher level events

– Dispatch

• Object Level Architectures

– Model View Controller

– Pluggable Look and Feel

– Undo / Redo


