
GUI Input:

Devices and Input Models

Recap on GUI Output

• Hardware

• Different layers

• Damage / Redraw

• Layout Strategies

• Now switch to other large aspect of GUIs: Input

Pixels
(Frame buffer, images)

Strokes
(Lines, curves, path models, fonts)

Objects
(Widgets, Retained Object Model)

Input

• Generally, input is harder than output
– More diversity, less uniformity

– More affected by human properties

• Will start with hardware and then to software

Input devices

• Keyboard

– Ubiquitous, but somewhat boring…

– Quite mature design, average 50-60 wpm

• QWERTY key layout

– Where did it come from?

QWERTY key layout

• From typewriter, Christopher Sholes 1868

• Urban Legends:

– Salespeople could type “typewriter” on first row only

– Designed to slow people down

• Originally designed to spread out likely adjacent key

presses to overcome jamming problem of very early

mechanical typewriters

– Left / right / left / right

Other Keyboard Layouts

• Other layouts have been proposed

– Dvorak is best known

– Widely believed to be better

– Experimental and theoretical evidence casts doubt on this

• Alternating hands of QWERTY are a win since fingers

move in parallel

QWERTY keyboard layout

• Whether or not Dvorak layout is better, it did not

displace QWERTY

– Economists call this “lock-in” or “path dependence”

– Lesson: once there is sufficient critical mass for a standard,

nearly impossible to dislodge (even if apparently better)

– Sometimes things are “good enough”

• We will see this issue again and again

– Pie menus, other research

Chorded Keyboards

• Fast, less space, but lot more training

Twiddler

• One-handed chorded keyboard

– After 400 minutes of practice, ten novices averaged

over 26 words per minute

Visual Keyboard

• People with disabilities

– Combine word prediction with eyegaze

– Note that word prediction not always better

Optimus Keyboard

• Still vaporware at this point

– Add OLEDs to keys, reconfigurable displays

Keyboards

• Repetitive Stress Injury

– Switching keyboard to mouse

and back a lot

• Take this seriously!

– Can be a VERY big deal

– Adjust your work environment

(e.g. chair height)

– Take breaks

– If you have pain: stop

Buttons

• Similar to keyboard, but not for typing letters

– Used to be common in old days

– These days, primarily on mouse

Valuators

• Returns a single value in range

• Major implementation alternatives:
– Potentiometer (variable resistor)

• Similar to typical volume control

– Shaft encoders

• Sense incremental movements

Locators (Pointing Devices)

• Returns a location (x,y point)

– usually screen position

• Examples

– Mice (current defacto standard)

– Track balls, joysticks, tablets, touch panels, etc.

• Could people use devices not coupled to screen?

Locators

• Two major categories:

– Absolute vs. Relative locators

• Absolute: One-to-one mapping from device movement
to input

– Ex. Tablets, touch screens

– Easier to develop motor skills

– But doesn’t scale past fixed distances

• bounded input range

– Can be less accurate for same range of physical movement

Relative locators

• Relative or incremental mapping

• E.g., maps movement into rate of change of input

– Ex. Joystick or TrackPoint

– More accurate (for same range of movement)

– Harder to develop motor skills

– Not bounded (can handle infinite moves)

Recap

• Absolute: One-to-one mapping from device movement
to input
– Ex. Tables, touchscreens

– Bounded input range

• Relative:
– Ex. Joystick, TrackPoint

– Unbounded input range

• Q: Mouse absolute or relative locator?
– Ignore “acceleration” for the moment

Discuss for 2 minutes

Q: Mouse relative or absolute locator?

• Third major type: “Clutched absolute”

– Within a range its absolute

– Can disengage movement (pick it up) to extend

beyond range

• picking up == clutch mechanism

• Other examples:

– Camera phone as mouse

– Uses optical flow to estimate direction

Pointing and Selection

• New possibility: camera mouse

– Already a product

– Works like optical mouse

• Also tried:

– Tilt sensors

– Hard to get good precision

Clutched absolute locators

• Good compromise

– Get one-to-one mapping when “in range” (easy to learn, fast,

etc.)

– Clutch gives some of benefits of a relative device (e.g.,

unbounded)

• Trackballs also fall into this category

Mouse Acceleration

• Since mouse is unbounded we can play a clever trick

• Increase speed when mouse is moving fast

– Middle of movement

• Normal when moving slow

– Start and end of movement

• Interesting perceptual effect:

people basically don’t notice this

Peephole Display

Touch panel

• What kind of a device?

Touch panel

• Absolute device

• Possible to do input and output together in one place
– actually point at things on the screen

• Resolution limited by size of finger (“digital input”)
– Or requires a pen

Touch panel construction

• Membrane

– resistive, fine wire mesh

• Optical

– finger breaks light beam

• Surface acoustic waves

• Capacitive

– PDA screens, SmartBoards

– Single touch only

Drawing tablet

• Absolute or relative?

Drawing tablet

• Absolute device

• Normally used with pen / stylus

– Allows “real drawing” (try drawing with a mouse vs. a pen)

– Can often trace over paper images

• Updated acoustic tablet

– recording whiteboard

– ultrasonic chirps

– 100dpi resolution over ~8ft

Interesting device: Virtual Ink Mimio

Interesting device: CrossPad

3D locators

• Can extend locators to 3 inputs

• Ex. Polhemus tracker

– 6D device (x,y,z + pitch, roll, yaw)

– Magnetic sensing technology

3D locators

• Can extend locators to 3 inputs

• Ex. Phantom

– Haptic feedback

3D locators

• Can extend locators to 3 inputs

• Ex. Data Glove

Lots of other emerging possibilities

• QR Codes

Lots of other emerging possibilities

• Camera Phones for

semi-literate people

• Grameen Bank

– Microloans

Pointing and Selection

• Barcodes

• RFIDs

• QR Codes

Lots of other emerging possibilities

• Touch sensitivity

Lots of other emerging possibilities

• Speech

– As data

– As recognition

Lots of other emerging possibilities

• Really direct manipulation with hands

– Uses “SmartSkin”

Lots of other emerging possibilities

• RFIDs

– Listen Reader

Lots of other emerging possibilities

• RodDirect

– Hack up an optical mouse, use pen as input

Lots of other emerging possibilities

• Biometrics

– Fingerprints, weight, voice pattern, eye scan

• Smart Dust

Some Thoughts on Input Devices

• Keyboard and Mouse most prevalent
– Path lock-in, they are good enough for most things

– GUI research really stuck in rut from mid 80s to mid 90s

• But can we do better?
– New situations, new domains, mobile + web tech

– Mobile people, people with disabilities, toys

– Cost also an important factor

Break

• Any questions?

• HOMEWORK: Create a Facebook account, and add
me as your friend.

Input is Harder than Output

• How to deal with diversity in input devices?

– Need a higher level abstraction for input

• How to get event to right widget?

Mouse

Software
Events

Keyboard

Software

Logical Device Approach

• One approach is to use “logical devices”

– Predefine a set of devices to support

– Logical device characterized by its software API

• the set of values it returns

• Old “Core Graphics” standard had 6 logical input devices

– Valuator ! returns a scalar value

– Button ! returns integer value

– Locator ! returns position on a logical view surface

– Keyboard ! returns character strings

– Stroke ! obtain input from a digitizer

– Pick ! select an object

Logical device approach

• If actual device missing, device simulated in software
– Valuator ! simulated slider

– 3D locator ! 3 knobs

• 1st step towards today’s widgets

• Abstraction of logical device model good

• But… abstracts away too many details

– some are important

– example: mouse vs. pen on palm pilot

• Both are locators

• What are some differences (?)

Logical Devices not successful but..

• Still useful to think in terms of “what

information is returned”

• Categorization of devices useful

– Two broad classes emerged

• Event devices

• Sampled devices

Categorization of Devices

• Event Devices

– Time of input is determined by user

– Best example: button

– When activated, creates an “event record”

(record of significant action)

• Sampled Devices

– Time of input is determined by the program

– Program polls for current value when it needs it

– Best example: valuator or locator

– Value is constantly updated

• Might best think of as continuous

A Unified Model

• A way to easily program for both?

– Rather than programming event devices one way and

sampled devices another way, a way to do both?

A Unified Model: The Event model

• Model everything as events

– Sampled devices handled as “incremental change” events

– Each measurable change a new event with new value

• Example we’ve already seen:

– MouseListener mouseClicked() (discrete)

– MouseMotionListener mouseMoved() (continuous)

Simulating Sampling under Event Model

• Lots of little events is a potential problem

– Can quickly fall behind if doing a lot of computation /

redraw for every event

• machines are fast, but can still get behind

– Sampling provided built-in throttling

• Would only poll data periodically

– Whoever posts events needs to be careful here

• Not too fast, not too slow, human perception

• Rare you will deal with this issue however

Relevant facts

• What do we need to know about each event?

– What

– Where

– When

– Value

– Additional Context

What Where When Value Context

• What (exactly) caused the event?

– e.g., left mouse button went down

– for “method based” systems this may be implicit in what

handler gets called

• Ex. mouseMoved() or mousePressed()

X-Windows defines 33 different types of events:

!" buttonPress

#" buttonRelease

$" keyPress

%" keyRelease

&" motionNotify

'" enterNotify

(" leaveNotify

)" focusIn

*" focusOut

!+"keymapNotify (change keymap)

!!"expose

!#"graphicsExpose (source of copy not

available)

!$"noExpose (source of copy is available)

!%"colormapNotify

!&"propertyNotify (some property changed)

!'"visibilityNotify (become covered)

!("resizeRequest

!)"circulateNotify (stacking order)

!*"configureNotify (resize or move)

#+"destroyNotify (was destroyed)

#!"gravityNotify (moved due to gravity)

##"mapNotify (became visible)

#$"createNotify

#%"reparentNotify (in diff. window)

#&"unmapNotify (invisible)

#'"circulateRequest

#("configureRequest

#)"mapRequest

#*"mappingNotify (keyboard mapping)

$+"clientMessage

$!"selectionClear (for cut and paste)

$#"selectionNotify

$$"selectionRequest

What Where When Value Context

• Where was the primary locator (mouse) when the

event happened?

– x,y position

– also, inside what window, what object, etc.

– can’t tell what mouse button down means without this

What Where When Value Context

• When did the event occur?

– Stored in Event Queue until program can get to it

• Why do we need to record time?

– If we have a queue, ordering already guaranteed(?)

• Hint: mouse setting and keyboard setting

• important for e.g., double-clicks and auto-repeat

What Where When Value Context

• Input value

– e.g., ASCII value of key press

– e.g., value of valuator

– some inputs don’t have a value

• e.g. button press

What Where When Value Context

• Status of important buttons

– shift, control, and other modifiers

– possibly the mouse buttons

Events in Java (Swing & AWT)

• Subclasses of java.util.EventObject

– and mostly java.awt.AWTEvent

– See java.awt.event.* and javax.swing.event.*

• Each kind of event has its own class

– A little hard to find all the parts defined in one place

– Harder to deal with uniformly

– But easily extensible for new event types

– Ex. MouseWheelEvent

Extending the Event Model

• Events can extend past simple user inputs

– A nice way of raising the level of abstraction

• Examples of “higher-level” events

– window enter/exit, region enter/exit

• system tracks mouse internally

• See java.awt.event.WindowListener

– Redraw / damage events

• See java.awt.event.PaintEvent

– Resize & window move events

• See java.awt.event.ComponentListener

“Artificial” Events in Java

• Added to the event queue like user events

• java.awt.event.FocusEvent

– Window becomes or loses focus

• java.awt.event.WindowEvent

– Window being closed, iconified, etc.

• Why do it this way?

– Simple programming model, highly consistent

– Almost everything in GUI is an event

– Extend your GUI via Listeners

Roadmap

Mouse

Software
Events

Keyboard

Software

Using Events from an Event Queue

• What object(s) gets the event?

Dispatch Strategies
What object(s) gets the event?

• “Bottom first” dispatch strategy

– lowest object in interactor tree that overlaps the

position in event gets it

Bottom-First Dispatch Strategy

“untitled - Paint” window

 Menu Bar

File

Edit

…

 Paint Toolbar

…

 Color Palette

 Scrollable Panel

Horizontal Scrollbar

Vertical Scrollbar

Drawing Canvas

 …

Dispatch Strategies
What object(s) gets the event?

• “Bottom first” dispatch strategy

• If that widget doesn’t handle event, then:

– Ignore the event

– Pass the event up to its parent

• Technically, in Java, event always handled

– Once a widget gets an event, widget handles it,

and then forwards event to listeners

– Why this approach?

• Why not forward to listeners directly(?)

– Java events don’t go back up to parent

Dispatch Strategies
What object(s) gets the event?

• Can also do “top-down”

– Root of tree gets it first, can act on or modify event

– If not handled, then gives to right child

– Root has another chance to act on it if child

(and its children) doesn’t handle it

Top-Down Dispatch Strategy

“untitled - Paint” window

 Menu Bar

File

Edit

…

 Paint Toolbar

…

 Color Palette

 Scrollable Panel

Horizontal Scrollbar

Vertical Scrollbar

Drawing Canvas

 …

Dispatch Strategies
What object(s) gets the event?

• Why Top-Down?

• Easy to impose high-level control

– Ex. No scrolling anywhere

• Did this for gesture recognition

– Parent figures out gesture, and then figures out

who to dispatch to

Two Major Ways to Dispatch Events

• Positional dispatch

– Event goes to an object based on position of the event

• Focus-based dispatch

– Event goes to a designated object (the current focus) no

matter where the mouse is pointing

• Q: Would mouse move events be done by positional

or focus dispatch(?)

Discuss 2 Minutes

(Consider painting vs

dragging an object)

Question & Answer

• Q: Would mouse move events be done by focus

or positional dispatch?

• A: It depends…

– painting: use positional

– dragging an object: need focus (why?)

• Why? What if we have a big jump?

• Cursor now outside object and won’t get next event!

– Think scrolling as well, too easy to move outside of elevator

Object

Previous mouse position

New mouse position

 Dragging Needs Focus Dispatch

Positional and focus based dispatch

• Will need both at different times

Summary

• Lots of input hardware

• Devices

– Logical: Valuator, Locator, Button, etc

– Event / Sampled

• Event model to unify Event and Sampled Devices

• What events look like

• Dispatch Strategies

– Bottom-first and top-down

Implications of Queued Events

• We are really operating on events from the past

• But sampled input is from the present

– mixing them can cause problems

– e.g. inaccurate position at end of drag

– Need to sample fast enough

– Need to process events quickly, don’t block the event queue

• May also be useful to coalesce continuous events

– Multiple mouse motions joined into a single mouse motion

– Coalescing may hurt in certain situations though…(?)

Implications of Queued Events

Positional dispatch

• If dispatching positionally, need a way to tell what

object(s) are “under” a location

– This is called “Picking”

• Probably don’t want to pick on the basis of a point

(single pixel)

– Why?

Positional dispatch

• If dispatching positionally, need a way to tell what

object(s) are “under” a location

– This is called “Picking”

• Probably don’t want to pick on the basis of a point

(single pixel)

– Why?

– Because it requires a lot of accuracy

• Instead may want to pick anything within a small

region around the cursor

Implementing Pick

• Possible to apply a clipping algorithm

– small clip region around cursor

– pick anything that is not completely clipped away

• Better is a recursive “pick traversal”

– Walk down the object tree

– Each object does a local test customized to its shape

(and semantics)

– Also tests its children recursively

Pick ambiguity

• Classic problem, what if multiple things picked?

– Two types

– (1) Hierarchical ambiguity

• are we picking the door knob, the door, the house, or the

neighborhood?

Pick ambiguity

– (2) Spatial ambiguity

• Which door are we picking?

Solutions for pick ambiguity

• No “silver bullet”, but two possible solutions

• (1) “Strong typing” (use dialog state)
– Not all kinds of objects make sense to pick at a given time

• Turn off “pickability” for unacceptable objects

• Reject pick during traversal

Solutions for pick ambiguity

• (2) Get the user involved
– direct choice

• typically slow and tedious

– pick one, but let the user reject it and/or easily back out of it

• often better

• feedback is critical

• need a way to get at the others

