GUI Input:
Devices and Input Models

Human-Computer Interaction Institute

Recap on GUI Output

Hardware

Different layers
Damage / Redraw
_ayout Strategies

Pixels
(Frame buffer, images)

- Now switch to other large aspect of GUIs: Input

Input

- Generally, input is harder than output
— More diversity, less uniformity
— More affected by human properties

- Will start with hardware and then to software

Input devices

Keyboard
— Ubiquitous, but somewhat boring...
— Quite mature design, average 50-60 wpm

QWERTY key layout

— Where did it come from?

QWERTY key layout

From typewriter, Christopher Sholes 1868
Urban Legends:

— Salespeople could type “typewriter” on first row only
— Designed to slow people down

- Originally designed to spread out likely adjacent key
presses to overcome jamming problem of very early
mechanical typewriters R
— Left / right / left / right st g

Other Keyboard Layouts

- Other layouts have been proposed
— Dvorak is best known
— Widely believed to be better

OOEOOHOEHEEOHE]
WHEELEEROOU0nEm
(G)L =)
S 1801 6 3

- Alternating hands of QWERTY are a win since fingers
move in parallel

QWERTY keyboard layout

- Whether or not Dvorak layout is better, it did not
displace QWERTY
— Economists call this “lock-in" or “path dependence”

— Lesson: once there is sufficient critical mass for a standard,
nearly impossible to dislodge (even if apparently better)

— Sometimes things are “good enough”

- We will see this issue again and again
— Pie menus, other research

Chorded Keyboards

- Fast, less space, but lot more training

Twiddler

One-handed chorded keyboard

— After 400 minutes of practice, ten novices averaged
over 26 words per minute

Visual Keyboard

- People with disabilities

— Combine word prediction with eyegaze
— Note that word prediction not always better

< . of Sords
R — ner

-~
" aey ;:una“" ‘“'“:{,V
saphin New) pape M""k
watliom Atwton :::.
. e on'»
natural = sagiei!
nature ".m .’ .—D'

"0 ATS P netwerk Ol," b A ae
i .t reurone '

T neuirine 00&" ::“.
~ne oltsvtinoucroo ..IGO

-

SECSREArY nwwwPF
22 A *

Y’”Y"" "u . w7 "

1

L daesan™t matter £ the sxast rrosmlve
srw }ho it Ia N e are B

Optimus Keyboard

. Still vaporware at this point
— Add OLEDs to keys, reconfigurable displays

Keyboards

- Repetitive Stress Injury
— Switching keyboard to mouse
and back a lot
- Take this seriously!
— Can be a VERY big deal

— Adjust your work environment %
(e.g. chair height)

— Take breaks
— If you have pain: stop

Buttons

Similar to keyboard, but not for typing letters
— Used to be common in old days
— These days, primarily on mouse

j_

pe= =

3 0
1"

Valuators

- Returns a single value in range

- Major implementation alternatives:
— Potentiometer (variable resistor)
- Similar to typical volume control
— Shaft encoders
- Sense incremental movements

Locators (Pointing Devices)

Returns a location (x,y point)
— usually screen position

Examples
— Mice (current defacto standard)
— Track balls, joysticks, tablets, touch panels, etc.

- Could people use devices not coupled to screen?

Locators

- Two major categories:
— Absolute vs. Relative locators

- Absolute: One-to-one mapping from device movement
to input
— Ex. Tablets, touch screens
— Easier to develop motor skills
— But doesn’t scale past fixed distances
- bounded input range
— Can be less accurate for same range of physical movement

Relative locators

Relative or incremental mapping

E.g., maps movement into rate of change of input
— Ex. Joystick or TrackPoint

— More accurate (for same range of movement)

— Harder to develop motor skills

— Not bounded (can handle infinite moves)

Recap

- Absolute: One-to-one mapping from device movement
to input
— Ex. Tables, touchscreens
— Bounded input range

- Relative:
— Ex. Joystick, TrackPoint
— Unbounded input range

Discuss for 2 minutes

- Q: Mouse absolute or relative locator?
— Ignore “acceleration” for the moment

Q: Mouse relative or absolute locator?

- Third major type: “Clutched absolute”
— Within a range its absolute

— Can disengage movement (pick it up) to extend
beyond range

- picking up == clutch mechanism

- Other examples:
— Camera phone as mouse
— Uses optical flow to estimate direction

Pointing and Selection

- New possibility: camera mouse
— Already a product
— Works like optical mouse

'Crbmcmtccmwnmb

- Also tried:

— Tilt sensors
— Hard to get good precision

Clutched absolute locators

- Good compromise

— Get one-to-one mapping when “in range” (easy to learn, fast,
etc.)

— Clutch gives some of benefits of a relative device (e.g.,
unbounded)

- Trackballs also fall into this category

Mouse Acceleration

Since mouse is unbounded we can play a clever trick

Increase speed when mouse is moving fast
— Middle of movement

Normal when moving slow

— Start and end of movement

Interesting perceptual effect:
people basically don’t notice this

Mose Properties N B

Qanet300n | Devces | ‘& Tiack ot |
QukSonp | Powen | Busers Viber
Curstr Speed ard Aocsie shon

Accobonson

oead o
& S [— f— | Fas 2.2 ;’:-

Peephole Display

Touch panel

- What kind of a device?

Touch panel

- Absolute device

- Possible to do input and output together in one place
— actually point at things on the screen

- Resolution limited by size of finger (“digital input”)
— Or requires a pen

Touch panel construction

Membrane

— resistive, fine wire mesh
Optical

— finger breaks light beam
Surface acoustic waves
Capacitive

— PDA screens, SmartBoards
— Single touch only

Drawing tablet

- Absolute or relative?

Drawing tablet

- Absolute device

- Normally used with pen / stylus
— Allows “real drawing” (try drawing with a mouse vs. a pen)
— Can often trace over paper images

Interesting device: Virtual Ink Mimio

e 0 e

- Updated acoustic tablet
— recording whiteboard
— ultrasonic chirps
— 100dpi resolution over ~8ft

Interesting device: CrossPad

3D locators

Can extend locators to 3 inputs

Ex. Polhemus tracker
— 6D device (x,y,z + pitch, roll, yaw)
— Magnetic sensing technology

3D locators

- Can extend locators to 3 inputs

- Ex. Phantom
— Haptic feedback

3D locators

- Can extend locators to 3 inputs
Ex. Data Glove

Lots of other emerging possibilities

- QR Codes

Lots of other emerglng possibilities

(452) 5552589%.101

Camera Phones for ﬁl Loan Application ﬁl
semi-literate people g

Grameen Bank s o o,
— Microloans . m_l m_

Raviewing an entered value

ECnng a value by dicking on the
ansociated barcode button. An
avdioc prompt is also played

Pointing and Selection

N

- Barcodes

. RFIDs i«&

1
- QR Codes

Lots of other emerging possibilities

- Touch sensitivity

Lots of other emerging possibilities

. Speech
— As data
— As recognition

p —
-

Move up,
ahhhhhhhh

\

Lots of other emerging possibilities

- Really direct manipulation with hands
— Uses “SmartSkin”

Lots of other emerging possibilities

- RFIDs

— Listen Reader

Lots of other emerging possibilities

- RodDirect

— Hack up an optical mouse, use pen as input

Lots of other emerging possibilities

Biometrics
— Fingerprints, weight, voice pattern, eye scan

Smart Dust

Some Thoughts on Input Devices

- Keyboard and Mouse most prevalent
— Path lock-in, they are good enough for most things
— GUI research really stuck in rut from mid 80s to mid 90s

- But can we do better?

— New situations, new domains, mobile + web tech

— Mobile people, people with disabilities, toys

— Cost also an important factor
T {

Break

- Any questions?

- HOMEWORK: Create a Facebook account, and add
me as your friend.

Input is Harder than Output

- How to deal with diversity in input devices?
— Need a higher level abstraction for input

- How to get event to right widget?

Mouse
Software

Events

Keyboard
Software

_>‘mﬁtled - Paint™ window

— [ienu Bar
— File
— Edit

_Paint Toolbar

p—— 4

— Color Palette
—Scroflable Panel
Horizontal Scrolibar
E Vertical Scrollbar
Crawing Canvas

— -

Logical Device Approach

- One approach is to use “logical devices”

— Predefine a set of devices to support

— Logical device characterized by its software API
- the set of values it returns

Old “Core Graphics” standard had 6 logical input devices
— Valuator

Button
Locator
Keyboard
Stroke
Pick

— returns a scalar value

— returns integer value

— returns position on a logical view surface
— returns character strings

— obtain input from a digitizer

— select an object

Logical device approach

If actual device missing, device simulated in software
— Valuator — simulated slider
— 3D locator — 3 knobs

1st step towards today’s widgets

- Abstraction of logical device model good =N

- But... abstracts away too many details
— some are important
— example: mouse vs. pen on palm pilot
- Both are locators
- What are some differences (?)

Logical Devices not successful but..

- Still useful to think in terms of “what
information is returned”

- Categorization of devices useful
— Two broad classes emerged
- Event devices
- Sampled devices

Categorization of Devices

- Event Devices
— Time of input is determined by user
— Best example: button

— When activated, creates an “event record”
(record of significant action)

- Sampled Devices
— Time of input is determined by the program
— Program polls for current value when it needs it
— Best example: valuator or locator
— Value is constantly updated
- Might best think of as continuous

A Unified Model

- A way to easily program for both?

— Rather than programming event devices one way and
sampled devices another way, a way to do both?

A Unified Model: The Event model

- Model everything as events
— Sampled devices handled as “incremental change” events
— Each measurable change a new event with new value

- Example we've already seen:
— MouselListener mouseClicked () (discrete)
— MouseMotionListener mouseMoved () (continuous)

Simulating Sampling under Event Model

- Lots of little events is a potential problem

— Can quickly fall behind if doing a lot of computation /
redraw for every event

- machines are fast, but can still get behind

— Sampling provided built-in throttling
- Would only poll data periodically

— Whoever posts events needs to be careful here
- Not too fast, not too slow, human perception
- Rare you will deal with this issue however

Relevant facts

- What do we need to know about each event?
— What
— Where
— When
— Value
— Additional Context

What

- What (exactly) caused the event?
— e.g., left mouse button went down

— for “method based” systems this may be implicit in what
handler gets called

- Ex. mouseMoved() or mousePressed()

X-Windows defines 33 different types of events:

YseD buttonPress

buttonRelease

E@D keyPress

keyRelease

H<@D motionNotify

<D enterNotify

@=eD leaveNotify

“&a@D focuslin

we@h focusOut

rrakeymapNotify (change keymap)

ITREf expose

rExafgraphicsExpose (source of copy not
available)

rExafhoExpose (source of copy is available)

rEpafcolormapNotify

rExafpropertyNotify (some property changed)

rZalvisibilityNotify (become covered)

rr=cresizeRequest

&l eirculateNotify (stacking order)
@l configureNotify (resize or move)
B~ destroyNotify (was destroyed)
Er=afgravityNotify (moved due to gravity)
EE<@’mapNotify (became visible)
EE<@createNotify

EgkereparentNotify (in diff. window)
Ef<@unmapNotify (invisible)
EZ<lcirculateRequest
E&alconfigureRequest
E/&a'mapRequest

Ene@’mappingNotify (keyboard mapping)
E% clientMessage
ErsgfselectionClear (for cut and paste)
EB@selectionNotify
EEselectionRequest

Where

- Where was the primary locator (mouse) when the
event happened?
— X,y position
— also, inside what window, what object, etc.
— can’t tell what mouse button down means without this

What Where When Value Context

- When did the event occur?
— Stored in Event Queue until program can get to it

- Why do we need to record time?
— If we have a queue, ordering already guaranteed?)
- Hint: mouse setting and keyboard setting
- important for e.g., double-clicks and auto-repeat

What Where When Value Context

Input value

— e.g., ASCII value of key press

— e.g., value of valuator

— some inputs don’t have a value
- e.g. button press

What Where When Value Context

. Status of important buttons
— shift, control, and other modifiers
— possibly the mouse buttons

Events in Java (Swing & AWT)

Subclasses of java.util.EventObject
— and mostly java.awt.AWTEvent

— See java.awt.event.* and javax.swing.event.*

Each kind of event has its own class
— A little hard to find all the parts defined in one place
— Harder to deal with uniformly

— But easily extensible for new event types
— EX. MouseWheelEvent

Extending the Event Model

- Events can extend past simple user inputs
— A nice way of raising the level of abstraction

- Examples of “higher-level” events
— window enter/exit, region enter/exit
- system tracks mouse internally
- See java.awt.event.WindowListener

— Redraw / damage events
- See java.awt.event.PaintEvent

— Resize & window move events
- See java.awt.event.ComponentListener

“Artificial” Events in Java

- Added to the event queue like user events
java.awt.event.FocusEvent
— Window becomes or loses focus
java.awt.event.WindowEvent
— Window being closed, iconified, etc.

- Why do it this way?
— Simple programming model, highly consistent
— Almost everything in GUI is an event
— Extend your GUI via Listeners

Roadmap

Mouse
Software

Keyboard
Software

Events

_>‘mtitled - Paint™ window

— [ienu Bar
— File
— Edit

_Paint Toolbar

> »

. Color Palette
— Scroflable Panel

Horizontal Scrollbar
Vertical Scrollbar

Crawing Canvas

Using Events from an Event Queue

- What object(s) gets the event?

y umtithed - Paim
(e Et Yew [mage Colrs el

OB/ 9N\ ¥
OR~>p=- 09

3

Dispatch Strategies
What object(s) gets the event?

“‘Bottom first” dispatch strategy

— lowest object in interactor tree that overlaps the
position in event gets it

F

& untithed - Paim

Bottom-First Dispatch Strategy

N "
FgQ [/
J A % ‘;
“ r\ ad n' ‘
N\ /Z ' :
o 4 g 5 o
e
33
<
) IIIIIIIIIIIIII
(e i iad 1o o] |
Mok, o ek T o Uhe el Merw

“untitled - Paint” window

Menu Bar
—e File
—e [Edit

—ePali t Toolbar

—eColor Palette

—eScrollable Panel

e Horizontal Scrollbar
_e Vertical Scrollbar
_e Drawing Canvas

Dispatch Strategies
What object(s) gets the event?

- “Bottom first” dispatch strategy

- If that widget doesn’t handle event, then:

— Ignore the event
— Pass the event up to its parent

- Technically, in Java, event always handled

— Once a widget gets an event, widget handles it,
and then forwards event to listeners

— Why this approach?
- Why not forward to listeners directly(?)
— Java events don’t go back up to parent

Dispatch Strategies
What object(s) gets the event?

- Can also do “top-down”
— Root of tree gets it first, can act on or modify event
— If not handled, then gives to right child

— Root has another chance to act on it if child
(and its children) doesn’t handle it

Top-Down Dispatch Strategy

“untitled - Paint” window

. oatitted - Peint . Menu Bar

o v e o : e File

J.: . g —e [Edit

s al % ‘;/. »,: —e ...

S i“‘ - —ePaint Toolbar

R ¢ 1 %

23 , —eColor Palette

C ll;!‘='l=g=a!'l§gg=‘! —eScrollable Panel

e e Horizontal Scrollbar
_e Vertical Scrollbar
_e Drawing Canvas

Dispatch Strategies
What object(s) gets the event?

- Why Top-Down?

Easy to impose high-level control
— EX. No scrolling anywhere

Did this for gesture recognition

— Parent figures out gesture, and then figures out
who to dispatch to

Two Major Ways to Dispatch Events

- Positional dispatch

— Event goes to an object based on position of the event

- Focus-based dispatch

— Event goes to a designated object (the current focus) no
matter where the mouse is pointing

- Q: Would mouse move events be done by positional

or focus dispatch?)

Discuss 2 Minutes

(Consider painting vs
dragging an object)

Question & Answer

- Q: Would mouse move events be done by focus
or positional dispatch?

- A:ltdepends...
— painting: use positional
— dragging an object: need focus (why?)

Dragging Needs Focus Dispatch

- Why? What if we have a big jump?

@
<{}> \
Objegt\ New mouse position

\ Previous mouse position

- Cursor now outside object and won't get next event!
— Think scrolling as well, too easy to move outside of elevator

Positional and focus based dispatch

- Will need both at different times

Summary

Lots of input hardware

Devices
— Logical: Valuator, Locator, Button, etc
— Event / Sampled

Event model to unify Event and Sampled Devices
- What events look like

Dispatch Strategies
— Bottom-first and top-down

Implications of Queued Events

- We are really operating on events from the past

- But sampled input is from the present
— mixing them can cause problems
— e.g. inaccurate position at end of drag
— Need to sample fast enough
— Need to process events quickly, don't block the event queue

- May also be useful to coalesce continuous events
— Multiple mouse motions joined into a single mouse motion
— Coalescing may hurt in certain situations though...(?)

Impllcatlons of Queued Events

Y S &L ‘)\“:“"Z.,/?*..J\'
B]Il.lllIl mEE .

Teo e wod that you nart 9 comet Them choose 8 epiacement o e ARlerat e I o
ol e wird by L8 e 00 a0meen Keybodrd n Tadiet 2 ot Pave’ Tap Copy e
sortre

Sorveted test ru 10 2000

the Tabiet 3
<an do handwiiting P C
recOgtion

Positional dispatch

- If dispatching positionally, need a way to tell what
object(s) are “under” a location
— This is called “Picking”

- Probably don’t want to pick on the basis of a point
(single pixel)
— Why?

Positional dispatch

If dispatching positionally, need a way to tell what
object(s) are “under” a location
— This is called “Picking”

- Probably don’t want to pick on the basis of a point
(single pixel)
— Why?
— Because it requires a lot of accuracy

Instead may want to pick anything within a small
region around the cursor

Implementing Pick

- Possible to apply a clipping algorithm
— small clip region around cursor
— pick anything that is not completely clipped away

- Better is a recursive “pick traversal”
— Walk down the object tree

— Each object does a local test customized to its shape
(and semantics)

— Also tests its children recursively

Pick ambiguity

. Classic problem, what if multiple things picked?
— Two types
— (1) Hierarchical ambiguity

- are we picking the door knob, the door, the house, or the
neighborhood?

Pick ambiguity

— (2) Spatial ambiguity
- Which door are we picking?

Solutions for pick ambiguity

- No “silver bullet”, but two possible solutions

- (1) “Strong typing” (use dialog state)
— Not all kinds of objects make sense to pick at a given time
. Turn off “pickability” for unacceptable objects
- Reject pick during traversal

Solutions for pick ambiguity

- (2) Get the user involved
— direct choice
- typically slow and tedious
— pick one, but let the user reject it and/or easily back out of it
. often better
- feedback is critical
- need a way to get at the others

