Output in Window Systems
and Toolkits

Human-Computer Interaction Institute

Recap

- Low-level graphical output models
— CRTs, LCDs, and other displays
— Colors (RGB, HSV)
— Raster operations (BitBlt)
— Lines, curves, path model
— Fonts
— Affine Transforms (matrix — rotate, translate, scale)

- Today, windows-level graphical output

Interactive System Layers

Interactive Application

Toolkit

Window System

Basic Drawing & Input

OS

/O Hardware

Interactive System Layers

Interactive Application

Toolkit

Window System

E\
ast [
“Clure > Basic Drawing & Input

0OS

e This is what we discussed last time
* Lines, Fonts, Affine Transforms, etc
« Javaz2D, GDI, DirectX, OpenGL, Quartz2D

Interactive System Layers

Interactive Application

Toolkit

Window System

Basic Drawing & Input

« Damage / Redraw
 Basics of Layout

0OS

Damage / Redraw Mechanism

- Windows suffer “damage” when they are obscured
then exposed (or when resized)

— Damaged area is “dirty” area that needs to be redrawn

Damage / Redraw Mechanism

- Windows suffer “damage” when they are obscured
then exposed (or when resized)

— Damaged area is “dirty” area that needs to be redrawn

Wrong contents,
needs redraw

Damage / Redraw

- Goal: Make it easy to redraw
— Reduce programmer burden

- One way of doing redraw:
— Call “erase” on the damaged areas

— Figure out what content should be there

— Use basic drawing methods like drawLine (),
fillEllipse (), drawText (), to fill in damaged areas

— Works, but low-level
- Complex and error-prone

Damage / Redraw

- Wh Pros and Cons of
cou Retained Object Model?
-1 (vs just using drawing primitives) S, etc
\
- |
— Discuss for 4 minutes

Retained object model (aka Display Lists)

— System saves list of graphical objects (vs bitmap of screen)
— Edit the screen by editing the saved list

— Sort of a lower-level version of Widgets and Interactor Tree

Advantages of Retained Object Model

- Provided by many graphics packages

Used with modern graphics hardware

— Main CPU modifies display list, very fast GPU draws it
- Simpler to program with

— Worry about objects, not how to draw them

— Higher level of abstraction

- Windows and objects do “the right thing”

— Automatic re-display when uncovered, changed, etc.

Advantages of Retained Object Model

- Can also support:
— high-level behaviors like move, resize, cut/copy/paste ...
— high-level widgets (like selection handles) automatically
— constraints among objects
— automatic layout
— external scripting

Disadvantages of Retained Object Model

Significant space penalties

— can be 100s of bytes (1K?) per object
— Imagine a scene with 40,000 dots

— (But less and less important...)

Possible time penalties
— If not used directly by GPU

Possibly too low level, limited, or device specific
— If tied too closely to a specific GPU

Concepts may be replicated by toolkit
— You'll see this shortly

Digression #1
Performance Issues

- Display must be updated quickly, or else flickering
— How fast? Depends, roughly within 100 msec
— More on human perception later in course

- Solution is double-buffering

— Use memory buffer rather than direct to video memory
— Pixel copy fast, won't get caught in middle of redraw

Memory
buffer

Digression #2
Layers

Different layers of abstraction related

Interactive A

oS
/0 Hardware

Pixels
(Raster, bitblt, frame buffer, bitmaps)

Some things easier to do in some layers than others
— Different pros and cons

— Ex. Transparency and alpha blending?

— Ex. Building interactive UI?

Digression #2
Layers

- Objects
— Node + Edge objects B—;
— Node has border + text

— Edge has thickness + arrow

. Strokes
— One Graph object
— Knows position of all nodes + edges
— Draws all lines, text, borders, etc

- Pixels
— Graph object contains bitmaps of nodes + arrows
— Or might be just one large bitmap

Outline

- Damage / Redraw
— Retained Object Model

— This time, at toolkit level < ———
- Basics of Layout

Output in Toolkits

. Output organized around widgets and interactor tree
— Each object knows how to draw itself
— Each object might have children (recurse drawing)

“untitled - Paint” window

.) — Menu Bar
fﬁ & Yow page (ol e . N File
2l \ — Edit
3 ! = ! — ..
= 1 { — Paint Toolbar
oa ’ i o ,,i‘,‘;
o0
o2 | x — Color Palette
[« BEEEEEEREEEEEE — Scrollable Panel
—_—T— T T Horizontal Scrollbar
Vertical Scrollbar
Drawing Canvas

—-—_ LR

Damage Management

Wrong contents,
needs redraw

- Damage management for toolkit similar as before
— Key difference: need to tailor for interactor tree (vs flat list)

- Flat lists seem sufficient, why use interactor tree(?)
— Can group objects together
— Can do layout
— Can calculate objects to redraw better
— Z-Order (some object on top of others)
— Easier to dispatch events

Damage Management

- Typical scheme: each widget reports its own damage
— Tells parent about damage, which tells parent, etc.

— Button is damaged when:
- Button is pressed
- Button is enabled / disabled
- Button text is changed

- Basically, damaged when anything happens to change
its visual appearance

— In Java Swing, this happens via repaint ()

Damage Management

- Typical scheme: each widget reports its own damage
— Tells parent about damage, which tells parent, etc.
— Aggregate damaged regions at topmost widget
— Arrange for redraw of damaged area(s) at the top
Typically batch redraws together (performance)

Normally one enclosing rectangle

Some do two rectangles (good for moving one object)
Could do arbitrary shapes, but not a clear win

[xﬁfﬂﬂé?f%’*ﬂ/@/f:’/d

T

Hj/x)ff/ //’H [;/fy’/ s,

oooop

' -

ow

e s

T CZ :f;"/{”’:""{:’q ’K’//{”’:’fé’?ﬁé’?ﬁ’?ﬁfg G
éfff/jf;fff/jf;}{f// f/xfﬁ///ﬁ [:V ff/ff/f;f/ff/f;ﬂ éfff/jf;fff/jf;}{ffé
. B »
i oo m »
o o ___w» "
Vi Vi Wi Y

Redraw Strategy #1

- In response to damage, system schedules a redraw

- Redraw everything each time
— Go thru entire tree
— Have every widget draw itself
— Use double-buffering and clipping to speed things up

— Most appropriate for small numbers of objects, and if
drawing is really quick compared to computation

— Quite viable with fast graphics HW
- Millions of graphics primitives / sec

Redraw Strategy #2

- Redraw only the affected areas of the screen
— Figure out the minimum set of widgets to redraw
— Intersect all widgets with the damaged area
- Set clipped area to be same as damaged area
- Apply “trivial reject”

- Just test for intersection of bounding boxes

— Bounding box is minimum rectangle containing widget
— No overlap = safe to skip -

Redraw Strategy #2

- What objects redrawn here?

2
ﬂéﬁ%ﬁﬁ%ﬁﬁ%ﬁﬁ%ﬁﬁéﬁﬁéﬁv
- 1}3 lgﬁﬁ?ﬁﬁ?ﬁﬁ?ﬁﬁ?ﬁﬁ?ﬁﬁ?ﬁ/

e
ﬁéﬁﬁéﬁﬁéﬂéﬁ@ﬁéﬂéﬁﬂéﬁﬂ

i
!3lanW1 ﬁQ%V?W@/#V?WV?W@/%@?Wﬂ

- o
- 22
R,
'——————Jfﬁffﬁ'fﬁf e
ﬁévﬂéyﬁéﬁ%ﬁﬁ%ﬁﬁ%ﬁﬁ%ﬁﬂ

s

v 'Te? A ﬁf,d

ComboBox o »~29©?©©‘
— ’WWV&QV/#V/#V&%V&%@?V,

f ﬁf ﬁf Ef ﬁf ﬁf]
ﬂéﬁéﬁﬁéﬁﬁéﬁﬁéﬁﬁéﬁﬁﬁf
ﬂw%ww%ww%ww%ww%ww%wwﬂ

r‘(:r"ac*aacn([)

~ RadioButton
~ RadioButton

Trivial Reject Test

For axis-aligned rectangles, only need to test the
diagonal of one against edges of the other

— Test both points for above-top, below-bottom,
left-of-left, right-of-right

— Trivial reject IFF both are above-top, both left-of-left, etc

Issue: How to Handle Other Shapes?

- What objects redrawn here?

s,

A O
Button TexiArea

ComboBox v TextArea?2 %f,;f%ﬁ’fpﬁfﬁ

~ CheckBox _

'/" /?'/" /?'/" il

~ RadioButton
~ RadioButton -l

Issue: How to Handle Other Shapes?

- Fortunately, Java2D makes it easy to check
— jJava.awt.Shape method intersects ()

- Note: not immediately clear to me which is better
— Rectangles fast, easy to check, easy to implement

— Arbitrary shapes more flexible, but shape intersect check
can hide slow computations

Issue: Clipping

Same basic idea applies to clipping
— Trivial reject, but also trivial accept

— Given a clip rectangle, can quickly figure out what should
and shouldn’t be drawn

— Technically, won’t be drawn anyway, but fewer calculations

Typical Overall Processing Cycle

Before
while (app is running) ({
get next event
dispatch event to right widget

After
while (app is running) ({
get next event
dispatch event to right widget
if (damaged) {
redraw

}

Outline

- Damage / Redraw
- Basics of Layout <

2-Minute Break

Layout Management

- Key Issues
— where do components get placed?
— how much space should they occupy?

- Why is this hard?
— changing sizes, fonts, resources
— adding and removing components

When Layout Goes Bad

& layout - D] x|
Eile Edt View Help

3 layout =] wlnl 2nie] o] X =
B =) o

]
netscape whdget xv-bigger

Before

dayout

3 object(s) 218KB

After

& layout - | O] x|
Eie Edt \View Help

-3 layout E]] b]*,,l X,Il).’blﬂJ
i =) |
netscage widget xv-begper
aayout

3 object(s) 21.8¢8

When Layout Goes Bad

Netscape XV

Netscape: The D

tsite: :_:E;.‘E;F'
—ll
.- F\vj,\,_ﬂ_'_/i Y

When Layout Goes Bad

When Layout Goes Bad

Windows 95

¢ Netscape - [Nets

E‘eﬁw!mﬁoaomm
Optors Dwectory Window Hep

S |2]

AMIﬂhNeu J

What's Neaw? | s Coai? |

.A‘Ul " .
C oo A ;'
OviTvIw

Asamus & Asrvan
O Fasrivms & Dusany

Bhacown MESSAGIN
et .F.NHAN(‘IB;I
28 Oocument) w7

Motif

—

L

File Edit View Go
Go | o | I

Back | Forward| o0 N
Netsite: |Iht- |

E

—mj

Simplest Strategy: Fixed Layout

- Hardcode size and positions of all widgets
— assume objects don't move or change size
— safe assumption in many cases (dialog boxes)
— easy for GUI builders (most use this approach)

& Confirm Exit @

2 Exk Echpsa SDK?

[Always exit without prompt

- Downsides of this approach?

Fixed Layout Doesn’t Always Work

Easy but very limiting

— only good enough for simplest cases
— hard to do dynamic content

— also doesn’t handle resize

| € »
B s 2 0N & BARARERRREEs O

Dynamic Layout

- Change layout on the fly to reflect the current situation

- Need to do layout before redraw
— Ex. can’t be done in paint ()

— Because you draw in strict order, but layout (esp. position)
may depend on size/position of things not in order (drawn

after you)

while (app is running) ({
get next event
dispatch event to right widget
if (damaged) {
layout
redraw

Dynamic Layout

- Two simple strategies
— Top-down or outside-in
— Bottom-up or inside-out

Top-down or outside-in layout

- Parent determines layout of children

— Typically used for position, but sometimes size

— EX. Rows & Columns
— Ex. Dialog box OK / Cancel buttons
- always stay at lower right, even on resize

OK

Cancel

Bottom-up or inside-out layout

|Fle EGt View Insert Farm

News »
- Children determine layout of parent '@g:'--- S0
. o +F4
— Typically just size of children Soran
— Think of it as a shrink-wrap container Close e
. parent just big enough to Miran i
hold all children TS
- Ex. menus Import...
€, Preview in Browser. .,
Page Setup...
(& prirt Preview. .
e & prit... CtriP
Window Help
%ﬂewWMow 0‘35001
Properties...
1 I'wwwiuicourse631fallol \schedule . html R %
2 I'iwwwiuicourse\ 2001 springlschedule. html ;, o <
3 I'iwwwiuicourse631Fallol Y homework _1.html
More Pages; .., Ext

Neither one is sufficient

- Need both

- May even need both in same object
— horizontal vs. vertical
— size vs. position (these interact!)
- Can get messy fast

- Need more general strategies

Boxes and Glue Layout Model

- Comes from the TeX document processing system
- Rough idea:

— Phase 1: bottom-up, each widget reports its size needs
(computing those needs from any child widgets)

— Phase 2: top-down, takes available space, splits it among
child widgets according to needs, recurses on children

Widget Sizes

- Natural size (preferred size)
— the size the object would normally like to be

. €e.g., button: title string + border
— getPreferredWidth() / getPreferredHeight ()

- Min size
— minimum size that makes sense
- e.g. button may be same as natural
. e.g. scrollbar can shrink
— getMinWidth () / getMinHeight ()
- Max size
— getMaxWidth () / getMaxHeight ()

Example

Example

Reports that its height
and width cannot be
squeezed or stretched

Example

Reports that its height
cannot be squeezed or
stretched, but width can

Example

Reports that its height
and width can both be
squeezed or stretched

Example

How to make B
centered?

Example

A

Insert invisible “glue” that
can stretch as needed

Boxes and Glue Layout Model

Each piece of glue has:

— natural size

— min size (always 0)

— max size (often “infinite”)

— stretchability factor (0 or “infinite” ok)

. Stretchability factor controls how much this glue
stretches compared with other glue

How Boxes and Glue works

- Boxes (widgets) try to stay at natural size
— expand or shrink glue first
— if we can'’t fit just by changing glue, then expand or shrink
boxes (and only then)
. Glue stretches / shrinks in proportion to stretchability
— example: 18 units to stretch
- glue1 has factor 100
- glue2 has factor 200
- stretch glue1 by 6
. stretch glue2 by 12

- Boxes changed evenly (within min, max)

Computing boxes and glue layout

- Bottom up pass:
— compute natural, min, and max sizes of parent from natural,
min, and max of children
- Top down pass:
— top-level window size fixed at top
— at each level in tree determine space overrun (shortfall)
— make up this overrun (shortfall) by shrinking (stretching)
. glue shrunk (stretched) first

- if reaches min (max) only then shrink (stretch)
components

What if it doesn’t fit?

- Layout breaks
— Possibility #1: negative glue, leads to overlap

Netscape: The D

— Possibility #2: absolute min size, cannot shrink more

Struts and Springs model

- Developed independently, but can be seen a
simplification of boxes and glue model
— more intuitive (has physical model)

Struts and Springs

Title Bar

B R
]

| | I
Always want centered Fixed
Width

Original implementation used “constraints” to
specify relationships

— B.RIGHT = TitleBar.RIGHT — 5;

— A.CENTER = TitleBar.CENTER

Struts and Springs

- Most current implementations use “struts and springs”
— Struts represent fixed lengths (think O stretchable glue))
— Springs push as much as they can (evenly stretchable glue)
— Components (boxes) not stretchable (min = preferred = max)

- Usually done programmatically

Springs and Struts model

- What if you want to do boxes and glue type
proportional stretching?
— 75% left, 25% right

Springs and Struts model

What if you want to do boxes and glue type
proportional stretching?
— 75% left, 25% right

Put in multiple springs

— 3 left, 1 right

— Sort of a hack, but simple and good enough in most cases
— Alternatively, add in stretchability factor to springs

What do we have in Swing?

)

Swing (& AWT) Layout Managers

- See Java Tutorial
— http://java.sun.com/docs/books/tutorial/uiswing/layout/visual.html

| BoxLayoutDemo o &' [] GridLayoutDemo
Button 1: Button 1

Button 2 Button 3 Long-Named Button 4

Button 3 3
Long-Named Button 4 | lays out in equal-size grid rectangles (uses max)

s |

single row or column (too simple)

Swing (& AWT) Layout Managers

BorderLayoutDemo

Button 1 (PAGE_START)

Button 3 (LINE_START) Button 2 (CENTER) 5 (LINE_END)

Long-Named Button 4 (PAGE_END)

5 areas: north, south, east, west, center (put objects into each area)

“| CardLayoutDemo | CardLayoutDemo

| JPanel with JButtons v | | JPanel with JTextField ¥ |

| Button1 || Button2 || Button3 | TextField

pick one of n (e.g., tabbed panes)

Swing (& AWT) Layout Managers

SpringBox

Button 1 Long-Named Button 4

Fax:

| GridBagLayoutDemo
Button1 | Button2 | Button3

Email:

Address:

Long-Named Button 4

grid, but objects can span multiple cells (most complex and complicated)
See http://madbean.com/anim/totallygridbag

Java Swing Notes

- Layout is probably the most difficult and infuriating
aspect of Java Swing
— Easy things are hard
— Hard things are extremely hard

Summary

Different layers

Damage / Redraw
— Retained Object Model
— Toolkit damage

— Redraw strategies Pixels
L ayou : (Frame buffer, images)

— Fixed
— Top-down, Bottom-up
— Boxes and Glue, Struts and Springs

Next time, input models

Parameters to Layouts

. getPreferredSize(), getMinimumSize(), and
getMaximumSize() for each component

- Layout-specific parameters to add ()

— Which position for a BorderLayout:
contentPane.add(new JButton("Button 1"),
BorderLayout.NORTH);

— For BoxLayout: setAlignmentX(), etc.

- Can have glue objects also:
buttonPane.add(Box.createHorizontalGlue());

— Gap size for FlowLayout, GridLayout
— GridBaglLayout: “constraints”, weights, etc.

