
Output in Window Systems

and Toolkits

Recap

• Low-level graphical output models

– CRTs, LCDs, and other displays

– Colors (RGB, HSV)

– Raster operations (BitBlt)

– Lines, curves, path model

– Fonts

– Affine Transforms (matrix ! rotate, translate, scale)

• Today, windows-level graphical output

Interactive System Layers

I/O Hardware

OS

Window System

Toolkit

Interactive Application

Basic Drawing & Input

Interactive System Layers

I/O Hardware

OS

Window System

Toolkit

Interactive Application

Basic Drawing & Input

• This is what we discussed last time

• Lines, Fonts, Affine Transforms, etc

• Java2D, GDI, DirectX, OpenGL, Quartz2D

Last Lecture

Interactive System Layers

I/O Hardware

OS

Window System

Toolkit

Interactive Application

Basic Drawing & Input

Today

• Damage / Redraw

• Basics of Layout

Damage / Redraw Mechanism

• Windows suffer “damage” when they are obscured

then exposed (or when resized)

– Damaged area is “dirty” area that needs to be redrawn

Damage / Redraw Mechanism

• Windows suffer “damage” when they are obscured

then exposed (or when resized)

– Damaged area is “dirty” area that needs to be redrawn

Wrong contents,

needs redraw

• Goal: Make it easy to redraw

– Reduce programmer burden

• One way of doing redraw:

– Call “erase” on the damaged areas

– Figure out what content should be there

– Use basic drawing methods like drawLine(),

fillEllipse(), drawText(), to fill in damaged areas

– Works, but low-level

• Complex and error-prone

Damage / Redraw

• When redrawing, would be nice if window system

could help you

– Rather than you specifying what lines, fills, path models, etc

– You say what objects you have (Polygons, Circles, etc)

– These objects know how to redraw themselves

• Retained object model (aka Display Lists)

– System saves list of graphical objects (vs bitmap of screen)

– Edit the screen by editing the saved list

– Sort of a lower-level version of Widgets and Interactor Tree

Damage / Redraw

Pros and Cons of

Retained Object Model?
(vs just using drawing primitives)

Discuss for 4 minutes

Advantages of Retained Object Model

• Provided by many graphics packages

• Used with modern graphics hardware

– Main CPU modifies display list, very fast GPU draws it

• Simpler to program with

– Worry about objects, not how to draw them

– Higher level of abstraction

• Windows and objects do “the right thing”

– Automatic re-display when uncovered, changed, etc.

Advantages of Retained Object Model

• Can also support:

– high-level behaviors like move, resize, cut/copy/paste …

– high-level widgets (like selection handles) automatically

– constraints among objects

– automatic layout

– external scripting

Disadvantages of Retained Object Model

• Significant space penalties

– can be 100s of bytes (1K?) per object

– imagine a scene with 40,000 dots

– (But less and less important…)

• Possible time penalties

– If not used directly by GPU

• Possibly too low level, limited, or device specific

– If tied too closely to a specific GPU

• Concepts may be replicated by toolkit

– You’ll see this shortly

Digression #1
Performance Issues

• Display must be updated quickly, or else flickering

– How fast? Depends, roughly within 100 msec

– More on human perception later in course

• Solution is double-buffering

– Use memory buffer rather than direct to video memory

– Pixel copy fast, won’t get caught in middle of redraw

Digression #2
Layers

• Different layers of abstraction related

• Some things easier to do in some layers than others

– Different pros and cons

– Ex. Transparency and alpha blending?

– Ex. Building interactive UI?

Pixels
(Raster, bitblt, frame buffer, bitmaps)

Strokes
(Lines, curves, path models, fonts)

Objects
(Widgets, Retained Object Model)

I/O Hardware

OS

Window System

Toolkit

Interactive Application

Basic Drawing & Input

Digression #2
Layers

• Objects

– Node + Edge objects

– Node has border + text

– Edge has thickness + arrow

• Strokes

– One Graph object

– Knows position of all nodes + edges

– Draws all lines, text, borders, etc

• Pixels

– Graph object contains bitmaps of nodes + arrows

– Or might be just one large bitmap

Outline

• Damage / Redraw

– Retained Object Model

– This time, at toolkit level

• Basics of Layout

Output in Toolkits

• Output organized around widgets and interactor tree

– Each object knows how to draw itself

– Each object might have children (recurse drawing)

Damage Management

Wrong contents,

needs redraw

• Damage management for toolkit similar as before
– Key difference: need to tailor for interactor tree (vs flat list)

• Flat lists seem sufficient, why use interactor tree(?)

– Can group objects together

– Can do layout

– Can calculate objects to redraw better

– Z-Order (some object on top of others)

– Easier to dispatch events

Damage Management

• Typical scheme: each widget reports its own damage

– Tells parent about damage, which tells parent, etc.

– Button is damaged when:

• Button is pressed

• Button is enabled / disabled

• Button text is changed

• …

• Basically, damaged when anything happens to change

its visual appearance

– In Java Swing, this happens via repaint()

Damage Management

• Typical scheme: each widget reports its own damage

– Tells parent about damage, which tells parent, etc.

– Aggregate damaged regions at topmost widget

– Arrange for redraw of damaged area(s) at the top

• Typically batch redraws together (performance)

• Normally one enclosing rectangle

• Some do two rectangles (good for moving one object)

• Could do arbitrary shapes, but not a clear win

Redraw Strategy #1

• In response to damage, system schedules a redraw

• Redraw everything each time

– Go thru entire tree

– Have every widget draw itself

– Use double-buffering and clipping to speed things up

– Most appropriate for small numbers of objects, and if

drawing is really quick compared to computation

– Quite viable with fast graphics HW

• Millions of graphics primitives / sec

Redraw Strategy #2

• Redraw only the affected areas of the screen

– Figure out the minimum set of widgets to redraw

– Intersect all widgets with the damaged area

• Set clipped area to be same as damaged area

• Apply “trivial reject”

• Just test for intersection of bounding boxes

– Bounding box is minimum rectangle containing widget

– No overlap " safe to skip

Redraw Strategy #2

• What objects redrawn here?

Trivial Reject Test

• For axis-aligned rectangles, only need to test the

diagonal of one against edges of the other

– Test both points for above-top, below-bottom,

left-of-left, right-of-right

– Trivial reject IFF both are above-top, both left-of-left, etc

Issue: How to Handle Other Shapes?

• What objects redrawn here?

Issue: How to Handle Other Shapes?

• Fortunately, Java2D makes it easy to check

– java.awt.Shape method intersects()

• Note: not immediately clear to me which is better

– Rectangles fast, easy to check, easy to implement

– Arbitrary shapes more flexible, but shape intersect check

can hide slow computations

Issue: Clipping

• Same basic idea applies to clipping

– Trivial reject, but also trivial accept

– Given a clip rectangle, can quickly figure out what should

and shouldn’t be drawn

– Technically, won’t be drawn anyway, but fewer calculations

Typical Overall Processing Cycle

Before
while (app is running) {

get next event

dispatch event to right widget
}

After
while (app is running) {

get next event

dispatch event to right widget

if (damaged) {

redraw

}

}

Outline

• Damage / Redraw

• Basics of Layout

2-Minute Break

Layout Management

• Key Issues

– where do components get placed?

– how much space should they occupy?

• Why is this hard?

– changing sizes, fonts, resources

– adding and removing components

 Before

 After

When Layout Goes Bad

When Layout Goes Bad

 Netscape xv

When Layout Goes Bad

When Layout Goes Bad

 Windows 95 Motif

Simplest Strategy: Fixed Layout

• Hardcode size and positions of all widgets

– assume objects don’t move or change size

– safe assumption in many cases (dialog boxes)

– easy for GUI builders (most use this approach)

• Downsides of this approach?

Fixed Layout Doesn’t Always Work

• Easy but very limiting

– only good enough for simplest cases

– hard to do dynamic content

– also doesn’t handle resize

Dynamic Layout

• Change layout on the fly to reflect the current situation

• Need to do layout before redraw
– Ex. can’t be done in paint()

– Because you draw in strict order, but layout (esp. position)
may depend on size/position of things not in order (drawn
after you)

while (app is running) {

get next event

dispatch event to right widget

if (damaged) {

 layout

redraw

}

}

Dynamic Layout

• Two simple strategies

– Top-down or outside-in

– Bottom-up or inside-out

Top-down or outside-in layout

• Parent determines layout of children

– Typically used for position, but sometimes size

– Ex. Rows & Columns

– Ex. Dialog box OK / Cancel buttons

• always stay at lower right, even on resize

OK Cancel

Bottom-up or inside-out layout

• Children determine layout of parent

– Typically just size of children

– Think of it as a shrink-wrap container

• parent just big enough to

hold all children

• Ex. menus

Neither one is sufficient

• Need both

• May even need both in same object

– horizontal vs. vertical

– size vs. position (these interact!)

• Can get messy fast

• Need more general strategies

Boxes and Glue Layout Model

• Comes from the TeX document processing system

• Rough idea:

– Phase 1: bottom-up, each widget reports its size needs

(computing those needs from any child widgets)

– Phase 2: top-down, takes available space, splits it among

child widgets according to needs, recurses on children

Widget Sizes

• Natural size (preferred size)

– the size the object would normally like to be

• e.g., button: title string + border

– getPreferredWidth() / getPreferredHeight()

• Min size

– minimum size that makes sense

• e.g. button may be same as natural

• e.g. scrollbar can shrink

– getMinWidth() / getMinHeight()

• Max size

– getMaxWidth() / getMaxHeight()

Example

E

G

F

D

A CB

H

Example

E

G

F

D

A CB

H

Reports that its height

and width cannot be

squeezed or stretched

Example

E

G

F

D

A CB

H

Reports that its height

cannot be squeezed or

stretched, but width can

Example

E

G

F

D

A CB

H

Reports that its height

and width can both be

squeezed or stretched

Example

E

G

F

D

A CB

H

How to make B

centered?

Example

E

G

F

D

A CB

H

Insert invisible “glue” that

can stretch as needed

Boxes and Glue Layout Model

• Each piece of glue has:

– natural size

– min size (always 0)

– max size (often “infinite”)

– stretchability factor (0 or “infinite” ok)

• Stretchability factor controls how much this glue

stretches compared with other glue

How Boxes and Glue works

• Boxes (widgets) try to stay at natural size

– expand or shrink glue first

– if we can’t fit just by changing glue, then expand or shrink

boxes (and only then)

• Glue stretches / shrinks in proportion to stretchability

– example: 18 units to stretch

• glue1 has factor 100

• glue2 has factor 200

• stretch glue1 by 6

• stretch glue2 by 12

• Boxes changed evenly (within min, max)

Computing boxes and glue layout

• Bottom up pass:

– compute natural, min, and max sizes of parent from natural,

min, and max of children

• Top down pass:

– top-level window size fixed at top

– at each level in tree determine space overrun (shortfall)

– make up this overrun (shortfall) by shrinking (stretching)

• glue shrunk (stretched) first

• if reaches min (max) only then shrink (stretch)

components

What if it doesn’t fit?

• Layout breaks

– Possibility #1: negative glue, leads to overlap

– Possibility #2: absolute min size, cannot shrink more

Struts and Springs model

• Developed independently, but can be seen a

simplification of boxes and glue model

– more intuitive (has physical model)

• Original implementation used “constraints” to

specify relationships

– B.RIGHT = TitleBar.RIGHT – 5;

– A.CENTER = TitleBar.CENTER

BA

Always want centered Fixed

Width

Title Bar

Struts and Springs

• Most current implementations use “struts and springs”

– Struts represent fixed lengths (think 0 stretchable glue))

– Springs push as much as they can (evenly stretchable glue)

– Components (boxes) not stretchable (min = preferred = max)

• Usually done programmatically

A B

Struts and Springs

Springs and Struts model

• What if you want to do boxes and glue type

proportional stretching?

– 75% left, 25% right

Springs and Struts model

• What if you want to do boxes and glue type

proportional stretching?

– 75% left, 25% right

• Put in multiple springs

– 3 left, 1 right

– Sort of a hack, but simple and good enough in most cases

– Alternatively, add in stretchability factor to springs

What do we have in Swing?

Swing (& AWT) Layout Managers

• See Java Tutorial
– http://java.sun.com/docs/books/tutorial/uiswing/layout/visual.html

single row or column (too simple)

left-to-right and wraps to new rows if needed (uses preferred, can be aligned)

lays out in equal-size grid rectangles (uses max)

Swing (& AWT) Layout Managers

5 areas: north, south, east, west, center (put objects into each area)

pick one of n (e.g., tabbed panes)

Swing (& AWT) Layout Managers

grid, but objects can span multiple cells (most complex and complicated)
See http://madbean.com/anim/totallygridbag

Relationships between edges

Java Swing Notes

• Layout is probably the most difficult and infuriating

aspect of Java Swing

– Easy things are hard

– Hard things are extremely hard

Summary

• Different layers

• Damage / Redraw

– Retained Object Model

– Toolkit damage

– Redraw strategies

• Layout

– Fixed

– Top-down, Bottom-up

– Boxes and Glue, Struts and Springs

• Next time, input models

Pixels
(Frame buffer, images)

Strokes
(Lines, curves, path models, fonts)

Objects
(Widgets, Retained Object Model)

Parameters to Layouts

• getPreferredSize(), getMinimumSize(), and

getMaximumSize() for each component

• Layout-specific parameters to add()

– Which position for a BorderLayout:

contentPane.add(new JButton("Button 1"),

BorderLayout.NORTH);

– For BoxLayout: setAlignmentX(), etc.

• Can have glue objects also:

buttonPane.add(Box.createHorizontalGlue());

– Gap size for FlowLayout, GridLayout

– GridBagLayout: “constraints”, weights, etc.

