
Basic GUI Output

Recap

• Three big ideas that glue GUIs together

– Events

– Widgets

– Interactor Trees

Mouse
Software

Events

//// See bottom of file for software license

package edu.berkeley.guir.lib.satin;

import java.awt.*;

import java.awt.event.*;

import edu.berkeley.guir.lib.satin.objects.*;

/**

* Satin constants.

*

* <P>

* This software is distributed under the

*

* </PRE>

*

* @version SATIN-v2.1-1.0.0, Aug 11 2000

*/

public interface SatinConstants {

//===

//=== GLOBAL SATIN PROPERTIES ===

/**

* The name of Satin's properties file. Assumed to be in the current

* directory, from which Satin is started (via the java interpreter).

*/

public static final String SATIN_PROPERTIES_FILENAME = "satin.properties";

//=== GLOBAL SATIN PROPERTIES ===

//===

//===

//=== STYLE PROPERTIES ==

//// If you add any new Style properties, be sure to update the

//// Style.java file too.

public static final String KEY_STYLE_FILLCOLOR = "FillColor";

public static final String KEY_STYLE_FILLTRANSPARENCY = "FillTransparency";

public static final String KEY_STYLE_MITERLIMIT = "MiterLimit";

public static final String KEY_STYLE_DASHARRAY = "DashArray";

public static final String KEY_STYLE_DASHPHASE = "DashPhase";

//=== STYLE PROPERTIES ==

//===

} // of interface

//==

/*

Copyright (c) 2000 Regents of the University of California.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

SUCH DAMAGE.

*/

Keyboard
Software

S
ou

rc
e

C
od

e
(B

eh
av

io
r)

Outline

• Low-level graphical output models

– Hardware: CRTs, LCDs, and displays

– Color models

– Raster (bitmap) operations

– Lines, curves

– Fonts

– Affine Transforms

• Next lecture

– Graphical output models for windows

• Later on in course (possibly)

– Non-graphical output (sound, haptic / touch)

Human Perception and Displays

• Split a picture into a collection of small dots (pixels)
and we can reconstruct it

– resolution (ex. 1024x768) and pixels per inch (ex. 50ppi)

Display Devices

• How to display images?

– Cathode ray tube (CRT)

– Liquid crystal display (LCD)

– Gas plasma

– Light emitting diodes (LED)

• Most prevalent device: CRT

– Cathode Ray Tube

– AKA TV tube

Cathode Ray Tubes

• Cutting edge 1930’s technology

– Invented in 1897

– Uses a vacuum tube (big, power hog, …)

– Refined some, but few fundamental changes

• But still dominant

– Because TVs are consumer item

– Many many years of work to make cheap

– LCD’s only recently a real challenger

How a CRT works

Negative charge Positive charge
15-20 Kv

Vacuum Phosphor
Coating

Electron Gun

Deflection
Coils

• “Raster” lines across screen

• Modulate intensity along line (in spots) to get pixels

Phosphors on Screen

Pixels Determined by Frame Buffer

• “Frame buffer”

– 2D array of memory of intensity values

– Each memory cell controls 1 pixel

• All drawing done by placing desired values in memory

– Odds low you will ever interact at this layer (drivers)

 1

D
A

C

Adding Color

• Use 3 electron guns

• For each pixel place 3 spots of phosphor
(glowing R, G, & B)

• Arrange for red gun to hit red spot, etc.
– Requires a lot more precision than simple B/W

Color Frame Buffer

• Frame buffer now has 3 byte values for each pixel

– each value drives one electron gun

– can only see ~ 28 gradations of intensity for each of RGB

– 1 byte each ! 24 bits/pixel ! full color

• 16,777,216 color depth

D
A

C

255, 0, 0

Limitations of CRTs

• Screen size limitation

– 36” diagonal (why?)

• Bulky

– LCD and Plasma display alternatives

Other Display Technologies: LCD

• Liquid Crystal Display

• Liquid crystal has unusual physical properties

– rest state: rotates polarized light 90°

– voltage applied: passes as is

Layered display

• Rest state

– light blocked

Layered display

• Powered state

– twists light

– light emitted

Types of LCDs

• Reflective vs. Backlit

• Passive matrix vs. Active matrix

– Passive uses grid of conductive metal to charge each pixel

– Active uses a capacitor for each pixel

– Passive-matrix cheaper, but slower and lower contrast

CRTs vs LCDs

CRT

• Less expensive

• More accurate color

• More responsive
(ghosting, flicker)

• Better resolution

• Harder to damage

LCD

• Less power

• Weigh less

• Easier to adjust

• Less eye strain

• But LCDs are gaining
on CRTs

How Plasma Displays Work

• Plasma is a gas of xenon and neon atoms

– Add electrons to excite atoms and produce ultraviolet

• Small fluorescent tubes providing RGB

– UV hits RGB phosphors

– Vary the intensities of tubes to produce full range of colors

• Pros

– Thin

– Very good color

– Very large screens

• Cons

– Price

– Quality diminishes over time

How an LED works

• Invented in 1962 by Nick Holonyak, Jr.

• Electrons moving through semiconductor
diode emit light

• Long-lasting, durable, and efficient

• Some examples

– Digital clocks, Jumbo TVs, traffic lights, optical mouse,
remote controls, entertainment devices

– Blue LEDs since late 1990s

Other Interesting / Cool Technologies
Hi-res Displays

• IBM Roentgen
– 200 ppi 16 inch display

– 2560x2048 pixels (5.2 full color pixels)

Other Interesting / Cool Technologies
Hi-res Displays

• IBM Bertha
– 204 ppi display

– 3840x2560 pixels (9.8M full color pixels)

– $9,000

Other Interesting / Cool Technologies
Wearable Displays

• Small displays that can be
easily worn

Other Interesting / Cool Technologies
Direct Retinal Displays

• Direct retinal displays
– University of Washington HIT lab

• Set of 3 color lasers scan image
directly onto retinal surface
– Scary but it works

– Very high contrast, all in focus

– Potential for very very high
resolution

– Has to be head mounted

Other Interesting / Cool Technologies
Wooden Mirror

• Art piece by Daniel Rozin

Other Interesting / Cool Technologies
Multiple Displays

Other Interesting / Cool Technologies
Seam-awareness

• Mackinlay, Heer 2004

• Observation:
– Seams in between LCDs

distorts views

• Idea:
– Make apps seam-aware

Other Interesting / Cool Technologies
Seam-awareness

Other Interesting / Cool Technologies
Seam-awareness

Other Interesting / Cool Technologies
Seam-awareness

Other Interesting / Cool Technologies
Very Widescreen Displays

• Tan, Czerwinski, Robertson 2003

• Women do not do as well as men in 3D navigation
on regular displays

• But performed comparable to men with wider screens
and better 3D animations

Other Interesting / Cool Technologies
Very Large Displays

• Notifications and Start menu?

• How to reach menu bar?

Break

• Any questions / comments?

All these systems use a frame buffer

• Each pixel has 3 values

– Red, Green Blue

– 1 byte each ! 24 bits/pixel ! full color

• 16,777,216 color depth

• Why RGB?

– R, G, and B are particular frequencies of light

– Actual light is a mix of lots of frequencies

– Why is this enough?

Why RGB are enough

• Eye has receptors (cones) that are sensitive
to (one of) these

– Eye naturally quantizes/samples frequency distribution

from http://insight.med.utah.edu/Webvision/index.html

Technology-Centered Color Model

• Color usually programmed through RGB

• However, does not match how we think about colors

– Especially artists and interior designers

HSV Color Model

• Hue
– property of the wavelengths of light (i.e., “color”)

• Saturation
– purity of the hue

• e.g., red is more saturated than pink

– color is mixture of pure hue & achromatic color

• achromatic: a color lacking hue; white, gray, or black

• portion of pure hue is the degree of saturation

• Value (or Lightness or Brightness)
– how much light appears to be reflected from a surface

– some hues are inherently lighter (yellow) or darker (blue)

Color Components (cont.)

• Value• Saturation

from http://www2.ncsu.edu/scivis/lessons/colormodels/color_models2.html#saturation.

Color Components (cont.)

Color Model Summary

• RGB easy to program

– Close to hardware

– Pretty much universally supported on all platforms

• HSV is easier for people to use

– Uses people’s intuition of what color is

– There is a direct conversion to RGB

• Other colors models:

– CMYK: mixing pigments cyan, magenta, & yellow (printing)

What if we have less than 24 bit color?

• Back to RGB…

• If 16 bits/pixel…
– Can have 5 each in RGB with 1 pixel left over

– Decent range (32 gradations each, 32K colors)

• If 8 bits/pixel…
– 3 bits for GB, 2 for R

– not enough for anything useful

– Use a “trick” instead

• Thoughts?

Color lookup tables (CLUTs)

• aka Color Mapping

– aka Level of indirection

• Extra piece of hardware

– Use value in Frame Buffer as index into a CLUT

• e.g. 8 bit pixel ! entries 0…255

– Each entry in CLUT has full RBG value used to drive 3 guns

R G B0:
R G B1:
17 236 1292:

R G B255:

...

2

Palettes

• 8 bits / pixel with Color Lookup Table

– Gives “palette” of 256 different colors

– Chosen from 16M colors

– Can do a lot better than uniform by picking a good palette for
the image to be displayed (nice algorithms for doing this)

• Same basic idea behind GIF images as well

– 256 color palette selected from 16M

Color Maps with Window Systems?

• Recall that every window is virtual device

– Thus has its own set of colors

– But physical device may be limited

• Ex. can only render 256 colors total

• What to do if there are not enough colors?

– Ex. Window A uses one color map, Window B another?

2-Minute Discussion

Color Maps with Window Systems?

• Fail (return with error)

– Bad option

• Swap CLUTs based on active window

– Ugly, and non-active windows still need to display

– Also, still runs out of colors

• Add to color map (if possible)

– Keep some slots in reserve for this

• Pick closest color

• Dither using available colors

– Trade spatial resolution for color resolution

Outline

• Low-level graphical output models

– CRTs, LCDs, and displays

– Colors

– Raster operations

– Lines, curves

– Fonts

– Affine Transforms

Raster-oriented Programming Model

• Raster == Bitmap

• This model pretty close to actual frame buffer HW
– Integer coordinate system

– 0,0 typically at top-left with Y down

– All drawing primitives equivalent to filling in pixel color
values in frame buffer

Most Primitive Raster Operation: Copy

• Copy an area of the screen

copyArea(int srcx, int srcy,

 int w, int h,

 int destx, int desty)

• Copies a rectangular area of the screen

– Source rectangle to destination rectangle

More sophisticated: BitBlt

• Fast BitBlt key to evolution of modern GUIs

– Would not have been able to have effective graphics!

• Basic idea: combine pixels with values already there

• RasterOp (BitBlt)

– First used for B/W only (1 bit color)

– Boolean combination operators

Clear

(0)

Set

(1)

Copy Not OR AND XOR

Src Dest

More sophisticated: BitBlt

A
N

D

OR

RasterOp Continued

• Other combination operators

– 16 total including “not and”, “not or”

• XOR is particularly useful

– A ^ 1(Black) == ~A

– A ^ 0(White) == A

– Selective inversion

– A ^ B ^ B == A (basically, undo for any A and B)

– Older displays, this was how mouse was drawn

• Digression: XOR swap trick for swapping in place

– x := x ^ y

– y := x ^ y

– x := x ^ y

RasterOp Continued

• Note, XOR doesn’t work as well in color

– XOR well-defined (operates on bits)

– But: Blue ^ Violet == ??

• Other combination ops make more sense for color

– Transparency

• weighted average of colors

– “Alpha” values (RBGA) determine how much of source is
“mixed” with existing destination colors

– Leads to 32 bits (4 bytes) for colors

– See java.awt.Color

Alpha Compositing

• Transparency trivial in Java

Outline

• Don’t want to program at bit-level, so…

• Low-level graphical output models

– CRTs, LCDs, and displays

– Colors

– Raster operations

– Lines, curves

– Fonts

– Affine Transforms

Drawing Primitives

• Support drawing primitives

– Lines, rectangle, ovals, polylines, polygons, curves

– “Scan conversion” algorithms to decide what pixels to set
(won’t cover here)

• see e.g., Foley, van Dam, Feiner, & Hughes

• Begin to abstract beyond “just pixels”

Line Properties

• Width

• Line styles

– Solid, dashed 111000111000111000,
"double-dashed", patterned

• Cap-style

– butt, round, projecting
(aka squared, by 1/2 line width)

Polylines and Polygons

• End-caps:

– Miter = point

– Round = circle of the line width

– Bevel = fill in notch with straight line

• Filled, what parts?

– “Winding rule” determines what is “inside”

• Non-zero
• Parity / even-odd (#crossings)

Curves (Splines)

• Curves defined by cubic equations

– x(t) = axt
3 + bxt

2 + cxt + dx

y(t) = ayt
3 + byt

2 + cyt + dy

– Well-defined techniques from graphics (see e.g., Foley et al)

• Bézier curve defined by “control” points

– Goes through 2 end pts

– Other 2 define tangents

PostScript, PDF, Java2D Path Model

• Some models (ex. AWT) draw by drawing fixed
shapes (drawRect, drawEllipse, etc.)

• Path model unifies:
– Define a path first

• General ops: moveTo, lineTo’s, curveTo (etc.)

– Then draw it

• Stroke or fill

• With various properties of line & fill

• Advantages of this approach(?)

3-Minute Discussion

PostScript, PDF, Java2D Path Model

• Some models (ex. AWT) draw by drawing fixed
shapes (drawRect, drawEllipse, etc.)

• Path model unifies:
– Define a path first

• General ops: moveTo, lineTo’s, curveTo (etc.)

– Then draw it

• Stroke or fill

• With various properties of line & fill

• Advantages of this approach(?)

– Higher level abstraction providing more control and flexibility

– Can handle higher resolutions better

– Fewer bits to send (send a description vs bitmap)

– If same model used for screen and printing, debugging

Outline

• Low-level graphical output models

– CRTs, LCDs, and displays

– Colors

– Raster operations

– Lines, curves

– Fonts

– Affine Transforms

Fonts and Drawing Strings

• Font provides description
of the shape of a
collection of chars

– These shapes are
called glyphs

• Plus information e.g.
about how to advance
after drawing a glyph

• Plus aggregate info for
the whole collection

Fonts

• Typically specified by:

– Family or typeface

• e.g., courier, helvetica, times roman

• Some fonts are sans serif

• Some fonts are serif

• Some fonts are monospaced

– Size (normally in “points”)

– Style

• e.g., plain, italic, bold, bold & italic

• other styles: underline, strikethrough, embossemboss, shadowshadow

Points

• An odd and archaic unit of measurement

– 72.27 points per inch

• Origin: 72 per French inch (!)

– Postscript rounded to 72/inch most have followed

– Early Macintosh: point == pixel

Reference point and baseline

• Each glyph has a reference point

– Draw a character at (x,y) reference point will end up
at (x,y) (not top-left)

– Reference point defines a baseline

p

Advance width

• Each glyph has an “advance width”

– Where reference point of next glyph goes along baseline

pa

Ascent and Descent

• Glyphs are drawn both above and below baseline

– Distance below: “descent” of glyph

– Distance above: “ascent” of glyph

p Ascent
Descent

Standard Ascent and Descent

• Font as a whole has a standard ascent and
standard descent

– AWT has separate notion of Max ascent and descent,
but these are usually the same

pM Std Ascent
Std Descent

Height

• Height of character or font

– ascent + descent + leading

Width

H
e
ig
h
t

Leading

Aghfy

Leading

• Leading = space between
lines of text

– Pronounce “led”-ing after
lead strips that used to
provide it

– Space between bottom of
standard descent and top
of standard ascent

• i.e. interline spacing

Ligatures

• Merging two glyphs together

FontMetrics

• Objects that allow you to measure characters,
strings, and properties of whole fonts
– See java.awt.FontMetrics

• FontMetrics objects give you all of above

measurements

– for chars & Strings

– also char and byte arrays

– for whole fonts

• In Java, Graphics.getFontMetrics(f)
method gives FontMetrics for a given font

Aside: Microsoft’s ClearType

• Subpixel rendering
for fonts on LCD
screens

– Relies on how LCD
RGB is arranged

Aside: Screen Fonts vs Print Fonts

• Some fonts designed for printing

– Times New Roman, Helvetica

• Some fonts designed for screen

– Verdana, Arial, Comic Sans, Trebuchet

• See FontBlog for more info on fonts

– http://blogs.msdn.com/fontblog/

Anti-Aliasing

• Making edges appear smooth by using blended colors

• Useful for text (but not too small) as well as lines, etc.

• Supported by Java via RenderingHints
parameter to Graphics2D object

• Can get to Graphics2D object in method
paintComponent(Graphics)

Clipping

• Can also limit the effective area of drawing

– Any pixels outside “clip area” are left unchanged

– Like stencils in crafts

• May be limited set of shapes

– Historically a single rectangle

• Java2D, etc. now support arbitrary shape clipping

– Interesting drawing effects

– Much more expensive than a single rect

Outline

• Low-level graphical output models

– CRTs, LCDs, and displays

– Colors

– Raster operations

– Lines, curves

– Fonts

– Affine Transforms

Coordinate Transformations

• Linear (“affine”) transformation
– Translate, Scale, Rotate, Shear, plus any combination

• Can modify any shape, including text

• To fully understand, need matrix algebra:

– Affine transformations are based on
two-dimensional matrices of the following form:

x’ a c tx x

y’ = b d ty y where x’ = ax + cy + tx
1 0 0 1 1 y’ = bx + dy + ty

• See java.awt.geom.AffineTransform

Translate

0,0
0,0

• Move with respect to origin

• Equivalent to changing the coordinate system

– After translate(10,50) new origin is where (10,50) used to be

– Used to implement hierarchical coordinates (child object
gets own origin)

Scale

• Not necessarily uniform

• Get flip by negative scale

Rotate and Shear

• Used much less in UI work

– Note that axis no longer aligned

Rotations and Alpha in Java

• Trivial in Java

Why are Affine Transforms Useful?
Rotating UIs

Why are Affine Transforms Useful?
Rotating UIs

Why are Affine Transforms Useful?
Semantic Zooming UIs

Graphics Context Objects

• Same object often also provides access to
drawing operations
– Java: Graphics or Graphics2D object

– Maintains graphical “state”

• Color, font, transformation, clipping etc.

• Also gives access to drawing

– drawLine(), fillRect(), drawString(), etc.

– Important: two Graphics objects may draw on the same part
of the screen (but have different settings, e.g., current color)

– Rendering Hints go here too

• See paintComponent(Graphics2D)

Summary

• Low-level graphical output models

– CRTs, LCDs, and displays

– Colors

– Raster operations

– Lines, curves

– Fonts

– Affine Transforms

• Homework assignment:

– Read Sun’s Java2D tutorial

– http://java.sun.com/docs/books/tutorial/2d/index.html

– No summary needed

• P2 out soon

