
Tools, Layers, and

Basic Organization of UI Software

• Fitts’ Law

– Larger targets easier to hit than smaller targets

– Greater distance means longer time to hit target

Quick Review

• Basic organization of user interfaces

– 30,000 foot view of how user interfaces work

– Most of the course will be examining the details

• User Interface Layers and Tools

• Building a UI in Java Swing

Outline

• Computer in charge, prompts for input

– command-line prompts (DOS, UNIX)

• User waits on the program

– program tells user it’s ready for more input

– then user enters more input

• Most intro programming courses teach this style

Sequential Programs

• Imagine trying to edit and print a document

– Issue command to modify document

– View document

– Issue next command, view again…

• This doesn’t work well for highly-interactive apps

– Blocks on input, system controls everything

• Need to handle any legal user input at any time

– Limits kind of inputs

• Hard to model mouse input with linear I/O

– Output and input often coupled

• Ex. You can see a button AND can press on it

• Ex. You can see text AND edit it

Sequential Programs (cont.)

• Computer in charge vs…

• User in charge

– Can click anywhere

– Interact with any window

– Freedom and control

• A different style of

programming needed

for GUIs to work

Two Basic Paradigms for Interaction

Key Idea #1

Event-Driven Programming

• Can’t tell in advance where user will direct input

– Thus, can’t have synchronous input

– Need to support asynchronous input

• All input from human to computer is done via events

– mouse button ‘left’ went down

– item ‘New Folder’ is being dragged

– keyboard button ‘A’ was hit

– keyboard focus event

– …

Icon -> Mouse entered

-> Mouse moved

-> Mouse moved

-> Mouse moved

-> Mouse pressed

-> Mouse dragged

-> Mouse dragged

-> …

Event-Driven Programming

Event-Driven Programming

Mouse

Software

Keyboard

Software

Event Queue

• All generated events go to a single event queue

– Provided by operating system or GUI toolkit

– Why have an event queue?

• Why add a level of indirection?

• Why not send event immediately to application?

App

Find someone in class you don’t already know

Discuss for 4-5 minutes and come up with ideas

Event-Driven Programming

• All generated events go to a single event queue

– Provided by operating system or GUI toolkit

– Makes sure events are not accidentally dropped

– Ensures that events are handled in the order they occurred

– Hides specifics of input from apps

– Easier to add new input devices

– Easier to debug (if necessary)

– Can do pre-processing of events (coalesce mouse events)

Mouse

Software

Keyboard

Software

Event Queue
App

Event-Driven Programming

Mouse

Software

Keyboard

Software

Event Queue
App

• Note: most event queues running on its own thread

– This will have interesting implications later on

• Now how is the app structured?

Key Idea #2

Key Idea #2: Object-based organization

• There is an object for every screen element

– (Plus some hidden ones too)

• Each object has its own behaviors and states

– Can draw itself

– Might contain internal state

In

Out

A
p
p

l

TextArea2

Key Idea #2: Object-based organization

• Widgets, controls, components, interactors

– Highly reusable interactive components

• Programming with widgets now consists of:

– selecting an appropriate widget for a particular task

– positioning that widget in a window

– modifying widget properties to control how it looks and feels

– adding the right behavior to that widget

Key Idea #2: Object-based organization

Key Idea #2: Object-based organization

• GUIs and objects have strong natural relationship

– GUIs led to many advances in OOP

– GUIs helped propel OOP into mainstream

• Widgets only describe individual components

– How to organize entire windows?

Key Idea #3

Key Idea #3: Component Trees

• Widgets are organized hierarchically

– Normally reflecting spatial containment relationships

• Everything is done through this tree

– Build an interface == build a tree

– Change an interface == change a tree

– (Note that HTML is like this too)

– (Similar to scenegraph in graphics)

• Also several alternative names

– Interactor trees, Component trees, etc

frame

column

button button

Component Tree Rough Example

Component Tree Rough Example

“untitled - Paint” window

 Menu Bar

File

Edit

…

 Paint Toolbar

…

 Color Palette

 Scrollable Panel

Horizontal Scrollbar

Vertical Scrollbar

Drawing Canvas

 …

Component Tree Rough Example

“untitled - Paint” window

 Menu Bar

File

Edit

…

 Paint Toolbar

…

 Color Palette

 Scrollable Panel

Horizontal Scrollbar

Vertical Scrollbar

Drawing Canvas

 …

Notes on Component Trees

• Tree makes it easy to do certain things

– Move a parent node, moves all of its children too

• Often, you do not interact with tree directly

– No explicit notion of this tree in many GUIs

– Indirect interaction with tree, addChild(Component)

– Less true for HTML (tree is highly exposed as DOM)

Recap

• Event-driven programming

– All user input handled as events

– Events stored in event queue before sent off to app

• Widgets

– Buttons, checkboxes, text input fields, etc

• Component trees

– Windows can be represented internally as trees

Tying it All Together

while (app is running) {

get next event

send event to right widget (dispatch)

}

Mouse

Software
Events

Keyboard

Software

S
o
u
rc

e
C

o
d
e

(B
e
h
a
vi

o
r)

Tying it All Together

• Event loop

– Typically provided for you by most GUI toolkits

• Java, MFC

– Sometimes has to be done manually

• Palm Pilot, Win32

while (app is running) {

get next event

send event to right widget (dispatch)

}

Tying it All Together

Mouse

Software
Events

Keyboard

Software

S
o
u
rc

e
C

o
d
e

(B
e
h
a
vi

o
r)

These are done automatically for you

• Low-level input

• Event queue

• Widget management (click, move, draw)

• Tree data structure

You do this

• What widgets to use

• Layout of widgets

• Behavior when used

• Data model

Tying it All Together

Mouse

Software
Events

Keyboard

Software

S
o
u
rc

e
C

o
d
e

(B
e
h
a
vi

o
r)

Some implicit design constraints here:

• One person

• One computer

• One output

• Optimized for keyboard and mouse (ex. no speech)

• May need modified approaches in future

Administrivia

• Everyone visited the home page?

• Questions on first assignment?

• Anyone interested in doing a summer internship at

Hewlett-Packard research labs in the UK?

Help For Implementing Systems?

• Just showed a dataflow perspective

– What talks to what

– How things are wired together

• Need way of cleanly organizing what we talked about

– Understandable, modularized

• Look at the same concepts from layered perspective

– What layers are there?

– What are the responsibilities of each layer?

Application Program

“High-Level” Tools

Toolkit

Window System

OS

Hardware

Tools

Supporting

Each Layer

Layers of UI Software

Layers of UI Software (Commercial)

Application Program

“High-Level” Tools

Toolkit

Window System

OS

Hardware

Tools

Supporting

Each Layer
OS

Application Program

“High-Level” Tools

Toolkit

Window System

OS

Hardware

Layers of UI Software

Won’t discuss these too

much

– UI Builders and prototyping

tools (Visual basic, Hypercard)

Layers of UI Software

Application Program

“High-Level” Tools

Toolkit

Window System

OS

Hardware

Primary focus of first third

of semester

• Widget sets (Mac, Windows,

GTK, Motif)

• UI toolkits (Swing, MFC,

SWT, AWT, X-Windows)

Application Program

“High-Level” Tools

Toolkit

Window System

OS

Hardware

Layers of UI Software

Window Systems

• Provides a virtual device abstraction

– Each program can act as if it has a complete control

over screen & input

– Window system manages and controls multiple contexts,

logically separated, but implemented together

• Analogous to OS multiplexing of CPU and memory

Window Managers (History)

• Multiple (tiled) windows in research systems of 1960’s:

NLS, etc.

• Overlapping in Alan Kay’s thesis (1969)

• Smalltalk (1974) at Xerox PARC

Window Managers (History)

Window Managers (History)

Window Managers (History)

• Successful because multiple windows help users

manage scarce resources

– Screen space and input devices

– Attention of users

– Affordances for reminding and finding other work

Windows, Components

• “Window Manager”

– User interface to the windows themselves

– Decorations on windows, overall look and feel

– Mouse and keyboard commands to control windows

– Mechanics of the windows themselves (higher level)

• “Window System”

– Programming interface

– Output graphics to a window

– Input from mouse and keyboard to appropriate component

– Everything inside a window (lower level)

Windows, cont.

• Different Window Managers on same Window System

– fvwm, twm, Enlightenment, Motif, etc on top of X-windows

– Allows diversity and user preference

fvwm twm

Windows, cont.

• Different Window Managers on same Window System

– fvwm, twm, Enlightenment, Motif, etc on top of X-windows

– Allows diversity and user preference

• Different Window System on same hardware

– SunTools, X, NeWS on Unix machines

– Different programming models for developing GUI apps

• Many systems combine Window System and

Window Manager

– SunTools, Macintosh Quartz Compositor, MS Windows,

NEXTSTEP

Application Program

“High-Level” Tools

Toolkit

Window System

OS

Hardware

Layers of UI Software

Window Manager

Application Program

“High-Level” Tools

Toolkit

Window System

OS

Hardware

Layers of UI Software

Window Manager

Toolkits

• Recall: widgets are graphical objects that can be
manipulated by users to input values
– Menus, scroll bars, text entry fields, buttons, etc.

• Toolkits are libraries of widgets
– Motif, GTK+, Qt, AWT, Swing, SWT, Cocoa, MFC

– Used directly only by programmers

ComboBox

Toolkit Advantages

• Consistent Look and Feel
– Key insight of Macintosh toolbox

– Path of least resistance was to be consistent

Toolkit Advantages

• Consistent Look and Feel
– Key insight of Macintosh toolbox

– Path of least resistance was to be consistent

• Structured the programming task
– Choose what widget, choose placement,

choose properties, link to behavior

• Re-use of code
– Lot less work to use toolkit library than to recreate the wheel

– Lot less bugs too

But...

• Can be hard to use:

– Very large libraries

• Can end up as a complicated mess

• Very large manuals

– No help with when and how to call what

But...

Application Program

“High-Level” Tools

Toolkit

Window System

OS

Hardware

Layers of UI Software

Window Manager

Higher Level Tools

• Toolkits hard to use, higher-level support is helpful

– Graphical layout tools

– Higher-level frameworks

– Older tools called “User Interface Management Systems”

• Successful research ! industry

Graphical / Interactive Tools

• Create parts of UI by visually laying out components

– Examples: Menulay (1983), Trillium (1986), Jean-Marie

Hullot from INRIA to NeXT

– Now: “Interface Builders”, Visual Basic’s layout editor,

resource editors, “constructors”

Visual Basic

• Graphical parts done in an appropriate, graphical way

• Accessible to non-programmers

Component Architectures

• Example of framework at higher level than widgets

• Create apps from loosely coupled components which

are separately developed and compiled

– Example: drawing component handles picture inside a

document

– Example: embed a web browser in your app

• Invented by Andrew research project at CMU (1988)

• Old: OLE, OpenDoc, Visual Basic Controls (VBX

Controls), ActiveX, CORBA

• Current: COM, Java Beans

Observation #1

• Many common themes to what we discussed today

• Lower barriers to entry

– Really hard to program GUIs, create a framework to simplify

– Only programmers can create, create interface builders

• Increase expressiveness

• Raise levels of abstraction

– More examples of this next class

• Raise level of complexity that can be managed

– Components, re-use of code, frameworks

Observation #2

• Evolution of web highly similar to what we just described

– Lots of Javascript / AJAX Toolkits coming out

• Yahoo UI, Dojo, Rico, Prototype, …

– Web “components” coming out too

• Trivial to embed YouTube video on your web page

• Trivial to embed Google map

• What’s next? Embed Google office?

– Live spreadsheets? Live graphs?

– Connect their events together via GUI editor?

• Could be room for interesting final project here

– Take an old idea from GUI world and apply to Web

– Make it easy to create highly attractive and usable site

Subtle Influence of Tools

• Be aware of the path of least resistance

• Tools have Whorfian effects

– Change the way you think

– Change what is possible

!Change what you design

Subtle Influence of Tools

Subtle Influence of Tools

Summary

• High-level overview of how user interfaces work

• Dataflow perspective

– Widgets

– Component Tree

– Events

• Layered perspective

• Rest of course will be

the details

Java Swing
(1 minute break)

Java Swing

• Caveat: Swing is a decent toolkit but not organized

extremely well, and is messy in some places

– Big and complicated, “easy” things not always easy

– (Re)designed by a lot of people

– Has to work with/within old AWT toolkit which was

very badly designed (6 weeks!)

• Used to be only commercially viable toolkit in Java

– Until IBM’s Standard Widget Toolkit (SWT)

– SWT is like a much better AWT

• Will go over this again at Friday’s tutorial

Standard object-oriented approach

• Most functions of an interactive object encapsulated in

base class JComponent

– (& AWT super classes above it)

– Swing interactive objects are all subclasses of this

JComponent defines methods for:

• Each JComponent has methods for:
– Hierarchy management

– Geometry management

– Object status / info management

– Layout

– (Re)drawing

– Damage management

– Picking

– Input

– Actions

– Localization / internationalization

– …

Lots of Different Components

http://java.sun.com/docs/books/tutorial/uiswing/components/components.html

• Top-level containers
– Windows

• General containers

• Basic controls
– Buttons, checkboxes, etc

• Uneditable Information Displays

• Interactive Information Displays

Swing UIs are a Tree of Components

Container

JPanel

JButton JButton

JFrame

GridLayout
Manages

interface to

window system

Handles Layout

Hierarchy Management

• JFrame (& super class) API provides methods for
tree manipulation
– add(), getComponent (), getComponentCount(),
getParent(), remove(), removeAll(), etc…

• Debugging hint: if nothing shows up on the screen
– check that you added it to the tree

– check that you added it to the right parent

Geometry Management

• Every component maintains its own geometry
– E.g., bounding box: getX(), getY(), getWidth(),
getHeight(), getBounds()

• x,y is relative to parent

• i.e., 0,0 is at parent’s top-left corner

– Drawing is relative to top-left corner
• Each component has own coord system

Object status / information

• Each component maintains information about its state

– setVisible(), setEnabled()

• Each component instance keeps its application info

– getClientProperty(), putClientProperty()

Each object handles:

• Layout (later in course…)

• Drawing

– Each object knows how to (re)create its appearance based

on its current state

– paint() // don’t override this

• paintComponent()

• paintBorder()

• paintChildren()

Each object handles:

• Damage management

– Tell the system that something about your internal state

has changed and your image may not be correct

– repaint(), revalidate()

• Picking

– See if a point is “inside” or “outside”

– contains(x,y)

– even works for nonlinear widgets

Other parts

• Input (will talk about later…)

• Actions & Application interface

– Done in terms of sending events to “listeners”

• Register as a listener to get notifications of when

things you are interested in happen

• P1 - MouseListener

Lots of parts, but…

• … is (mostly) understandable in terms of major

tasks we have laid out

• Only have to implement the specialized parts
– E.g., paint()

Let’s build an interface...

package Demo631;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Demo1 implements ActionListener {

public static void main(String[] args) {…}

public JComponent buildUI() {…}

public void actionPerformed(ActionEvent e) {…}

}

public static void main(String[] args)

{

 // instantiate an object of this class

 Demo1 app = new Demo1();

 // create a top level frame and put an interface in it

 JFrame frame = new JFrame("Demo1");

 frame.getContentPane().add(app.buildUI(),

BorderLayout.CENTER);

 // arrange for it to close, then do layout and make visible

 frame.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);

 frame.pack();

 frame.setVisible(true);

}

public JComponent buildUI()

{

 // top level container laid out as a column

 JPanel pane = new JPanel(new GridLayout(0,1));

 // create a button and send its action events to us

 JButton b1 = new JButton("A Button!");

 b1.addActionListener(this);

 // install the button as a child of the pane

 pane.add(b1);

 ...

 return pane;

 }

// this gets called when we are notified

// of an ActionEvent. we asked for this via the

// addActionListener() calls above

public void actionPerformed(ActionEvent e)

{

 System.out.println("Action:" +

 e.getActionCommand());

}

What did we build?

What did we build?

Container

JPanel

JButton JButton

JFrame

GridLayout

An improved way to handle actions

• As shown, action response is separated from component
causing it

• Also normally have to have selection logic to pick out which
button, etc.

• Can use anonymous inner classes to improve these two things

// create a button

JButton b1 = new JButton("A Button!");

// put the response code here using an

// anonymous inner class

b1.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 System.out.println("Top button was pressed...");

 }

});

// install the button as a child of the pane

pane.add(b1);

// create a button

JButton b1 = new JButton("A Button!");

// put the response code here using an

// anonymous inner class

b1.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 System.out.println("Top button was pressed...");

 }

});

// install the button as a child of the pane

pane.add(b1);

Anonymous Inner Class

new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {

 …

 }

}

• Creates an instance of local unnamed subclass of ActionListener()
which has actionPerformed() method overridden

Summary

• Very high-level overview of how user interfaces work

– Widgets

– Component tree

– Events

• Rest of course

• Java Tutorial

– http://java.sun.com/docs/books/tutorial/uiswing/index.html

