Tools, Layers, and
Basic Organization of Ul Software

Human-Computer Interaction Institute

Quick Review

- Fitts’ Law
— Larger targets easier to hit than smaller targets
— Greater distance means longer time to hit target

@

Outline

- Basic organization of user interfaces
— 30,000 foot view of how user interfaces work
— Most of the course will be examining the details

- User Interface Layers and Tools
- Building a Ul in Java Swing

Sequential Programs

- Computer in charge, prompts for input
— command-line prompts (DOS UNIX)

Jasgj : /74 lis
JHS] J] z2 paz
J?C1 .] 25049 wrz 2
Jasj .] 2829 1lis 2S5
J%:] .] 2 paz 1
JdHJ] 24542 wrz -
REER .] 5 9 lis :
REER]] _”” 8 paz :
jasj .] wrz
J?C1 .] z lis 2€
—rW-r——r—— Jas] .] 8 9 paz 17 £ .
—rW-r——r-— REER REER 897 lis ! 2:1C wuwlad dtd
[jJasjPhydra cwiczenial$ 1ls -a
. semliZ.htm semi8.htm titpage.htm
.. semi3.htm semi9.htm toc.htm
cover .htm semid . htm semliiO.htm
semiS.htm semiild.htm ; 1S .mm xtoc.htm
index.htm semi6.htm semliiZ.htm 1
semll.htm semi?.htm semilcw.htm

- User waits on the program
program tells user it's ready for more input
then user enters more input

- Most intro programming courses teach this style

—ruWw-r——r-——
—rW-r——r-—

(C> Copyright 1985-—rw-r—r——

—rw-r——r—--—

Sat 06/82/2001 —Pm:p__p__

—rW-r——r—-—
23\ —rW-r——r-—

—rWw-r——r—--—

1
1
1
1
1
1
1
1
1
1
1
1

Sequential Programs (cont.)

- Imagine trying to edit and print a document
— Issue command to modify document
— View document
— Issue next command, view again...

- This doesn’t work well for highly-interactive apps
— Blocks on input, system controls everything
- Need to handle any legal user input at any time
— Limits kind of inputs
- Hard to model mouse input with linear 1/O
— Output and input often coupled
- EX. You can see a button AND can press on it
- EX. You can see text AND edit it

Two Basic Paradigms for Interaction

He Vew Gave Heb 15Ky

- Computer in charge vs... (@) m 2]

User in charge
— Can click anywhere
— Interact with any wWindow [re e e e oo

— Freedom and control J» A

szal '*' p
- A different style of el 1. A

programming needed ;2’; l = i

for GUIs to work °o 0
m
33 | e
« mEETERRETEeEIE

For Mo, o Mok Topats on the Help Merw, B2

Key ldea #1

Event-Driven Programming

- Can't tell in advance where user will direct input
— Thus, can’t have synchronous input
— Need to support asynchronous input

- All input from human to computer is done via events
— mouse button ‘left’ went down
— item ‘New Folder’ is being dragged
— keyboard button ‘A’ was hit
— keyboard focus event

Event-Driven Programming

i
N 7 oachee
lcon -> Mouse entered
-> Mouse moved
-> Mouse moved
-> Mouse moved
-> Mouse pressed
P -> Mouse dragged
5 -> Mouse dragged
-> ...

Event-Driven Programming

All generated events go to a single event queue
— Provided by operating system or GUI toolkit
— Why have an event queue?

- Why add a level of indirection?

- Why not send event immediately to application?

Find someone in class you don't already know
Discuss for 4-5 minutes and come up with ideas

Mouse
Software

Event Queue

Keyboard
Software

\
7

/

App

Event-Driven Programming

- All generated events go to a single event queue
— Provided by operating system or GUI toolkit
— Makes sure events are not accidentally dropped
— Ensures that events are handled in the order they occurred
— Hides specifics of input from apps
— Easier to add new input devices
— Easier to debug (if necessary)
— Can do pre-processing of events (coalesce mouse events)

Mouse

Software \ Event Queue / Aop
/

Keyboard
Software

Event-Driven Programming

Note: most event queues running on its own thread
— This will have interesting implications later on

Now how is the app structured?

Mouse

Software \ Event Queue /\ Aop
/

Keyboard
Software

Key ldea #2

Key Idea #2: Object-based organization

There is an object for every screen element
— (Plus some hidden ones too)

——

TextArea?2

>

In

Out

Each object has its own behaviors and states

— Can draw itself

— Might contain internal state

p
S

ddy

Key Idea #2: Object-based organization

- Widgets, controls, components, interactors
— Highly reusable interactive components

- Programming with widgets now consists of:
— selecting an appropriate widget for a particular task
— positioning that widget in a window
— modifying widget properties to control how it looks and feels
— adding the right behavior to that widget

O (X Yow Do Fomat Qebg Bn Query Owgan Jook fddine findow e

; Helle Warld Treed e (Y a0de)

B-a-VEE BH -y NEFERERAD D oo
M=) X

Jroem B

Opston Ixplicis
Frivaze Jub Yorwm Load()
Re .3%0w
ibilellic.Cagtion = "Hallc Vorld'™
Iad Jub
Frivate Jub cwmdCloase Click()
Ind
Ind Jub

gremcsys |

Project - Hello World

Mrugertios - it iefla

Key Idea #2: Object-based organization

GUIs and objects have strong natural relationship
— GUIs led to many advances in OOP
— GUIs helped propel OOP into mainstream

- Widgets only describe individual components
— How to organize entire windows?

Key Ildea #3

Key Idea #3: Component Trees

- Widgets are organized hierarchically
— Normally reflecting spatial containment relationships

- Everything is done through this tree
— Build an interface == build a tree
— Change an interface == change a tree
— (Note that HTML is like this too)
— (Similar to scenegraph in graphics)

- Also several alternative names @
— Interactor trees, Component trees, etc

Component Tree Rough Example

¥ untithed - Paim

7
2Q

J A
™~ A

NE

0 &
@ 0

m
%)

| €

s BFEEREEREEEEE N
FFRCTEEFER BrEas

For Mok, o Mok Topss on the Help Merw,

Component Tree Rough Example

l § untithed - Paim

“untitled - Paint” window

-o\enu Bar
—e File
—e [Edit

—ePaint Toolbar

' |-eColor Palette

I: i

—eScrollable Panel
e Horizontal Scrollba
_e Vertical Scrollbar

_e Drawing Canvas

Component Tree Rough Example

& untithed - Paim

ErECEOE
RORTEER

———
n
Poom
-3
" mm -
=
=
&
n

o), Ok Mok Topats on the el Merw

“untitled - Paint” window

-e \Menu Bar
—e File
—e Edit
—ePaint Toolbar

C

—eColor Palette

—eScrollable Panel

e Horizontal Scrollbar
_e Vertical Scrollbar
_e Drawing Canvas

Notes on Component Trees

- Tree makes it easy to do certain things
— Move a parent node, moves all of its children too

- Often, you do not interact with tree directly

— No explicit notion of this tree in many GUIs
— Indirect interaction with tree, addChild (Component)

— Less true for HTML (tree is highly exposed as DOM)

Recap

- Event-driven programming
— All user input handled as events
— Events stored in event queue before sent off to app

- Widgets

— Buttons, checkboxes, text input fields, etc

- Component trees
— Windows can be represented internally as trees

Tying it All Together

while (app is running) {
get next event
send event to right widget (dispatch)

“untitled - Paint™ window

Mouse — File
— Edit
Software Events —
= _@1!imr
Keyboard —
Software — Color Palette
— Scrollable Panel
Horizontal Scrolibar
Vertical Scrollbar
Craving Canvas

— -

Tying it All Together

while (app is running) {
get next event
send event to right widget (dispatch)

- Event loop
— Typically provided for you by most GUI toolkits
- Java, MFC
— Sometimes has to be done manually
- Palm Pilot, Win32

Tying it All Together

Mouse

Events

Software
Keyboard

_;mtitled - Paint” window

- [Jienu Bar

— File Q
— Edit

Software

e Paint ‘ﬁ:’»olbar

= _;5;90

e OhOI Igélette

— Scrollable Panel
Q

R
- S §
O

Vertical Scrollbar

E Horizontal Scrollbar

Crawing Canvas

-_— ..

|
These are done automatically for you You do this

* Low-level input
* Event queue

* What widgets to use
 Layout of widgets

« Widget management (click, move, draw) < Behavior when used
 Tree data structure

 Data model

Tying it All Together

Mouse

Events

Software
Keyboard

_;mtitled - Paint” window

— [1enu Bar
— File
— Edit

—_

e Paint ‘ﬁ:"olbar

Software

- "

— Color Palette

— Scroflable Panel
Horizontal Scrolibar

E Vertical Scrollbar
Drawing Canvas

Some implicit design constraints here:

* One person
* One computer
* One output

» Optimized for keyboard and mouse (ex. no speech)
« May need modified approaches in future

Administrivia
Everyone visited the home page?
- Questions on first assignment?

- Anyone interested in doing a summer internship at
Hewlett-Packard research labs in the UK?

Help For Implementing Systems?

Just showed a dataflow perspective
— What talks to what
— How things are wired together

Need way of cleanly organizing what we talked about
— Understandable, modularized

Look at the same concepts from layered perspective
— What layers are there?
— What are the responsibilities of each layer?

Layers of Ul Software

Application Program

“High-Level” Tools

Tools
Toolkit Supporting
Window System tach Layer
OS

Hardware

Layers of Ul Software (Commercial)

Application Program

“High-Level” Tools

Tools
Supporting
0S Each Layer

Hardware

Layers of Ul Software

Application Program

“High-Leng” Tools

Tool \v/
Won't discuss these too\

Window Sy much

OS — Ul Builders and prototyping
tools (Visual basic, Hypercard
Hardware (yP)

N _

Layers of Ul Softv?m

Application Prog

“High-Level” '}7

Primary focus of first third\
of semester

 Widget sets (Mac, Windows,
GTK, Motif)
Ul toolkits (Swing, MFC,

Toolkit™ \.SWT, AWT, X-Windows) /
Window System
OS

Hardware

Layers of Ul Software

Application Program

“High-Level” Tools

Toolkit

Window System

OS

Hardware

Window Systems

- Provides a virtual device abstraction

— Each program can act as if it has a complete control
over screen & input

— Window system manages and controls multiple contexts,
logically separated, but implemented together

- Analogous to OS multiplexing of CPU and memory

Be Edt Yew [nage Colrs teb

2.
2Q

§ T
s 8 \] g ! | 2|
4 , (.
\ 2 1 :
i 7 8 -
o0 i ‘
33

= IIIIIIII
FMEFRrEEen
he

For Mo, < Mol Topsds on

>
i U
i ®TTY

Help Mo, 15220

Iv el

Window Managers (History)

- Multiple (tiled) windows in research systems of 1960’s:
NLS, etc.

e

- Overlapping in Alan Kay’s thesis (1969)
- Smalltalk (1974) at Xerox PARC

Window Managers (History)

NEROX
G305 Werkatation
Lres lgnwdunn Dmoge

T mast m ooy v map e b vl b &

- ranae lomg gronag. vl Swite YV v

e Ans TvhST AN SyRet 8 seaginte s
‘ s el e wmags

-t e

Sonw dopbhy Tal o Bn phmasn e ¥
e Rl L SR EER R R
WAL R R s s e L e e
e el & e LR T I L
wl s phand 0 oM W A e
El o B R L e]
Sl R aees e pelraset e NN -

I -t

e e A pratang bevnn B dhowy
e amt = e Rl AE N e "
B S S T -
Ber vt P |
A Tamess o AR W e et s Y
Bohentn o8 oh e s D oamr ane iy
P Bh sl b R A W YR B e rem
B e e B B e et A 1 -

aas et s e e Pt aw sl
e g

' — i -
- - =
| > —
- oy WAl e s et e
Pl . o Camtet = Fgm
——

PRL s s A W T -
APttt wnd sevet dawm

s 413 T e

= P vl it
o & RS- .‘s-?..n.o-.q PR T
T LA AR A P N R 0 aed
- —————
T LT & LT 3
! arrer Protuenme Nar Bow & & moees ¥ L) Seme BN !
Taperene & Dvm o poomime "8 A (e R

mea s e B e Bewme prrbet 2o Lass sl " R _— s
! War wnr a0 8 Tasemen o G g smtbage -'.'P'.n. L
' Woam e et e e

Sy rganl 36-point text. j

| CHE w— —

Window Managers (History)

- Successful because multiple windows help users
Manage scarce resources
— Screen space and input devices
— Attention of users
— Affordances for reminding and finding other work

Windows, Components

- "Window Manager”
— User interface to the windows themselves
— Decorations on windows, overall look and feel
— Mouse and keyboard commands to control windows
— Mechanics of the windows themselves (higher level)

- “Window System”
— Programming interface
— Output graphics to a window
— Input from mouse and keyboard to appropriate component
— Everything inside a window (lower level)

Windows, cont.

- Different Window Managers on same Window System
— fvwm, twm, Enlightenment, Motif, etc on top of X-windows
— Allows diversity and user preference

-3

AOH. BEN: MU "HE -

Windows, cont.

- Different Window Managers on same Window System
— fvwm, twm, Enlightenment, Motif, etc on top of X-windows
— Allows diversity and user preference

- Different Window System on same hardware
— SunTools, X, NeWS on Unix machines
— Different programming models for developing GUI apps

- Many systems combine Window System and
Window Manager

— SunTools, Macintosh Quartz Compositor, MS Windows,
NEXTSTEP

Layers of Ul Software

Application Program

“High-Level” Tools

Toolkit

Window Manager
Window Systerk

OS

Hardware

Layers of Ul Software

Application Program

“High-Level” Tools

Toolkit

Window Manager
Window Systerk

OS

Hardware

Toolkits

- Recall: widgets are graphical objects that can be
manipulated by users to input values

— Menus, scroll bars, text entry fields, buttons, etc.

><] e
—— ComboBox
—_

e

e L

- Toolkits are libraries of widgets
— Motif, GTK+, Qt, AWT, Swing, SWT, Cocoa, MFC
— Used directly only by programmers

Toolkit Advantages

- Consistent Look and Feel
— Key insight of Macintosh toolbox
— Path of least resistance was to be consistent

& Tilw 111 Biewr Spetial

s tem §older ¥ Note Pad
T70K s Tediery 201E avails -

I

Fweder Sy é Voo aagrwr iy Coipliwr ¢ Fide

THIS 15 4 NO1e Pad Lest

(onlred Panet

Toolkit Advantages

- Consistent Look and Feel
— Key insight of Macintosh toolbox
— Path of least resistance was to be consistent

. Structured the programming task

— Choose what widget, choose placement,
choose properties, link to behavior

- Re-use of code

— Lot less work to use toolkit library than to recreate the wheel
— Lot less bugs too

But...

Can be hard to use:

— Very large libraries
- Can end up as a complicated mess
- Very large manuals

— No help with when and how to call what

javaawt.Container =} JComponent
T T
Text — JComboBox
JTextComponent AbstractB utton .
S IEXtAIES | [JMenuBar Menuitemn JButton JList
JEditorP ane — JPopupMenu JMenu JToggleButton JTree
i
t} JCheckB oxMenultermn JCheckB ox JToolBar
JTextPane
JRadioButtonMenultem JRadioButton JTable
JTextField
41 JS eparator JSlider JScrollBar
JPasswordField JToolTip JProgressBar
Sub-
java.awt.Panel windows
i JPanel
Lightweight L java.awt.Applet an
Heawywelght L JAm|d JViewPort
JintemalFrame JScrollPane
Top-Level
Windows JWindow JPane JRootPane
java.awt.Window java.awtFrame (-1 JFrame JSplitPane JTabbedPane
€192 Alkr Holtb java.awt.Dialog |1 JDialog JLayeredPane JOptionPane

Microsoft Foundation Class Library Version 6.0

CObject
\\A pplication Architecture
CcCmdTarget
FCwWinThread
L(:WinAmJ
LCO[ECDntI’DlM odule
Luser application
CDocTemplate
CSingleDocTemplate
CMultiDocTempl ate
-COleObjectFactory
L(:OIeTern plateServer
COleDataSource
COleDropSource
-COleDropTarget
COleMessageFilter
-CConnectionPoint

Window Support
CcCwWnd

Frame Windows
CFrame'nd

CMDIChildWwnd
Luser MDI windows
CMDIFrameWwnd

CMiniFrameWnd
user SDI windows
COleIPFrameWnd
LCSplitterwnd
Control Bars
-CControlBar
CDialogBar
COleResizeBar
CReBar
CStatusBar
CToolBar
Property Sheets
LCPropertySheet
LCPropertySheetEx

Luser MDI workspaces

user objects

CDocument E
COleDocument
LCOIeLinkinth:n:
LCOIeS erverDoc
LcrichEditDoc
“user documents
~CDocltem
-COleClientItem
COleDocObjectItem
CRichEditCntritem

user client items

“CoOleServerltem
CDocObjectServerltem

user server items

- CDocObjectServer

LDialog Boxes
CDialog

-CCommonDialog
LCColorDialog
L-CFileDialog
I-CFindReplaceDialog
+-CFontDialog
-COleDialog
-COleBusyDialog
COleChangelconDialog

-COleConvertDialog
COlelnsertDialog
COleLinksDialog

LCOI eUpdateDialog
-COlePasteSpecialDialog

LCOlePropertiesDial og
-CPageSetupDiaiog
LCPrintDialog

| COlePropertyPage
- CPropertyPage
LCPropertvPageEX

Luser dialog boxes

COleChangeSourceDialog

xceptions

CException

-CArchiveException
-CDaoException
CDBException
CFileException
ClInternetException
—CMemoryException
—CNotSupportedException
COleException
COleDispatchException

CResourceException

LCUserException

Lviews
CWiew
CCtrIView
CEditView
CListView
CRichEditView
CTreeView

CScrollview

tuser scroll views

CFormView

CD aoRecordView

CHtmlView

COleDBRecordView

CRecordView

Luser record views

File Services
- CFile

CMemFile

L(:S haredFile
-COleStreamFile

LCM onikerFile

L(:Jt\sync:MDnikerFiI e
LCD ataPathProperty
LCCachtal:lDataPathF‘rt:npert\r

-CSocketFile
- CStdioFile

LCIm:ernel:FiIe
CGopherFile
CHttpFile

user form views

L CRecentFileList

Controls
-CAnimateCtr|

CButton
I—CBitm apB utton
-CComboB ox
I—CCom boB oxEx
-CDateTimeCtr!
- CEdit
-CHeader Ctrl
L CHotKeyCtrl
|- CIPAddressCtrl
|- CListBox
i:CChQCk ListB ox
CDragListBox
CListCtrl
CMonthCalCtrl
I-COleControl
- CProgresscCtrl
CReBarcCtrl
I-CRichEditCtr|
-CScrollBar
CSliderCtrl
-CSpinButtonCtrl|
|-CStatic
|- CStatusBarCtrl
-CTabCtrl
-CToolBarCtrl
CToolTipCtrl
LCTreeCtr!|

—CDC
CClientDC
CMetaFileDC
CPaintDC
CWindowDC
Control Support
-CDock State
CImagelList

Graphical
Drawing Objects

CGdiObject

CBitmap
CBrush
CFont
CPalette
CPen
CRgn

Menus
CMenu

Command Line
-CCommandLinelnfo

ODBC Database
Support

-CDatabase
|-CRecordset
Lu'ser recordsets

{-CLongBinary

DAO Database
Support

{-CDaoD atabase
-CDaoQueryDef
{-CDaoRecordset
{-CDaoTableDef
|-CDaoWorkspace
Synchronization
- CSyncObject
CCriticalSection
CEvent
CMutex
CSemaphore
Windows Sockets
L CAsyncSocket
LCSor:ket

Graphical Drawing

Arrays
Carray (template)

CByteArray
CDWordarray

CStringArray
CUIntarray
CWaordAarray

arrays of user types

Lists
CList (template)

CStringList

lists of user types
Maps

CMap (template)
CMapWordToPtr
CMapPtrToWword
CMapPtrToPtr
CMapWordToOb
CMapStringToPtr
LCMapStringToOb
CMapStringToString
Lmaps of user types
Internet Services
-CInternetSession
I-CInternetConnection
CFtpConnection
CGopherConnection
CHttpConnection
-CFileFind
CFtpFileFind
CGopherFileFind
LCGopherLocator

Classes Not Derived
from CObject

Internet
Server API

CHtmlStream
CHttpFilter
CHttpFilterContext
CHttpServer
CHttpServerContext

Run-time Object
Model Support

Carchive
CDumpContext
CRuntimeClass
Simple

Value Types
CPoint

CRect

CSize

CString

CTime
CTimeSpan
Structures
CCreateContext
CMemoryState
COleSafeArray
CPrintInfo

Support Classes
cCmdul

|—COIeCm dul
CDacoFieldExchange
CDataExchange
CDBVariant
CFieldExchange
COleDataObject
COleDispatchDriver
CPropExchange
CRectTracker
CWaitCursor

Typed Template
Collections

CTypedPtrarray
CTypedPtrList
CTypedPtrMap
OLE Type

Wrappers
CFontHolder

CPictureHolder

OLE Automation
Types

COleCurrency
COleDateTime
COleDateTimeSpan
COleVariant
Synchronization
CMultiLock
CSingleLock

Layers of Ul Software

Application Program

“High-Level” Tools

Toolkit

Window
Window Systerk

ager

OS

Hardware

Higher Level Tools

- Toolkits hard to use, higher-level support is helpful
— Graphical layout tools
— Higher-level frameworks
— Older tools called “User Interface Management Systems”

. Successful research = industry

Graphical / Interactive Tools

- Create parts of Ul by visually laying out components

— Examples: Menulay (1983), Trillium (1986), Jean-Marie
Hullot from INRIA to NeXT

— Now: “Interface Builders”, Visual Basic’s layout editor,
resource editors, “constructors”

CH-II Warhd Treed e Y 0de)

Pctuu _:J llo-i

gl ancams
Project - Helk Wil x

o] J=

Opstoa Ixplicis
Frivatze Jub Yorwm Load()
Ra.3%cw

ibilellico.Cagtion = "MHallc Vorld'™
Iad Jub

- - Y - 8, &

p

26 Mebo_Workd (Helo_World)
= 3 borwe
T frivticte (rntsele)

» Graphical parts done in an appropriate, graphical way

* Accessible to non-programmers

Hello World! L
O |
" "

-~

- i el wored!
i ontrok True
Lot olen Tre
» o Moe 13 Copry Pen
" ol ve D Sokd
» oW 1

o T

Cokr n v

Coption
Beturrafsets the text dugleved n o oledt's ttle
NGWU\MW\

Component Architectures

- Example of framework at higher level than widgets

- Create apps from loosely coupled components which
are separately developed and compiled

— Example: drawing component handles picture inside a
document

— Example: embed a web browser in your app

Invented by Andrew research project at CMU (1988)

- 0Old: OLE, OpenDoc, Visual Basic Controls (VBX
Controls), ActiveX, CORBA

- Current: COM, Java Beans

Observation #1

Many common themes to what we discussed today

Lower barriers to entry
— Really hard to program GUIs, create a framework to simplify
— Only programmers can create, create interface builders

Increase expressiveness
Raise levels of abstraction
— More examples of this next class

Raise level of complexity that can be managed
— Components, re-use of code, frameworks

Observation #2

- Evolution of web highly similar to what we just described
— Lots of Javascript / AJAX Toolkits coming out
- Yahoo Ul, Dojo, Rico, Prototype, ...
— Web “components” coming out too
- Trivial to embed YouTube video on your web page
- Trivial to embed Google map

- What's next? Embed Google office?

— Live spreadsheets? Live graphs?
— Connect their events together via GUI editor?

- Could be room for interesting final project here
— Take an old idea from GUI world and apply to Web
— Make it easy to create highly attractive and usable site

Subtle Influence of Tools

- Be aware of the path of least resistance

- Tools have Whorfian effects
— Change the way you think
— Change what is possible
=» Change what you design

B
Subtle Influence of Tools

. | - JEE—_?*—«—' s o
rcﬂ sy may “:""" P i
v Sine : P e
Ny © Ldaww s
Ir‘ Benaw LR T

Wak seea ——

m———

—
—

——
s =] e ﬂ)
) U Fas
2 B [o |
o v iatt g lems S
~aor, Davend oo Flamsite el
o Ennae ' Foni ot -
o T o tlama » 8 ..J
elrvren i (i — > .£.':"-S . - - -
'ws T = ool # S m- ——— — - _-* T s j u“*q
- < - = = D — — e I
A...:. ke £l . T A sambert

Subtle Influence of Tools

T (2 Pew Domt Fgmet Qe Bn Quwr Owgem Took AdHe Wndow beb ,
B-3-VEEH ' "@BN) NFEERAD T oo Plomams

!’ Project Mol Wiwkd »
Garwe sl & Helle Warld - frenkieth (Code) - 'T u m. :9 : !
kB | reem | |tew = B Hebo_Workd (Helo_World)

=3 boews

i Ogtton Ixplicis
A R Privaze Jub Yorm Load() = Q tritcte Trecke)

o [%a.3%ow
ibilelloc.Cagtion = "Mallo Vorld'™
F & fad Sub
— Frivate Jub cmdCloase Click()
3 taa
s Ind Jub
S -
0o
0
® ~
rugertios lrmtieila

Caption
Eeturrafsets the text dugleyed i o0 cbiect's Wil
b or Belowy an SBpcT's KON

Summary

High-level overview of how user interfaces work

Dataflow perspective
— Widgets
— Component Tree

— Events

Application Program

Layered perspective ——#

“High-Level” Tools

Rest of course will be
the detalls

Toolkit

Window System

- Window Manager
™~

OS

Hardware

Java Swing

(1 minute break)

Java Swing

- Caveat: Swing is a decent toolkit but not organized
extremely well, and is messy in some places
— Big and complicated, “easy” things not always easy
— (Re)designed by a lot of people

— Has to work with/within old AWT toolkit which was
very badly designed (6 weeks!)

- Used to be only commercially viable toolkit in Java
— Until IBM’s Standard Widget Toolkit (SWT)
— SWT is like a much better AWT

- Will go over this again at Friday’s tutorial

Standard object-oriented approach

Most functions of an interactive object encapsulated in
base class JComponent

— (& AWT super classes above it)

— Swing interactive objects are all subclasses of this

;

==} JComponent
A

javaawt.Container
Text JComboBox
JTextComponent AbstractB utton .
JTextArea JMenuBar Menultemn JButton JList
i
JEditorP ane JPopupMenu Menu (— JToggleButton JTree
Q JCheckBoxMenuitern | JCheckBox JToolBar

JTextPane

JRadioButtonMenultern |— JRadioB utton JTable

JComponent defines methods for:

Each JComponent has methods for:
— Hierarchy management

— Geometry management

— Object status / info management
— Layout

— (Re)drawing

— Damage management

— Picking

— Input

— Actions

— Localization / internationalization

Lots of Different Components

- Top-level containers
— Windows

General containers

Basic controls
— Buttons, checkboxes, etc

Uneditable Information Displays
Interactive Information Displays

http://java.sun.com/docs/books/tutorial/uiswing/components/components.htmi

Swing Uls are a Tree of Components

0o

JFrame

GridLayout

Hierarchy Management

- JFrame (& super class) APl provides methods for
tree manipulation

— add (), getComponent (), getComponentCounty(),
getParent (), remove (), removeAll (), etc...

- Debugging hint: if nothing shows up on the screen
— check that you added it to the tree
— check that you added it to the right parent

Geometry Management

- Every component maintains its own geometry

— E.g., bounding box: getX (), getY (), getWidth (),
getHeight (), getBounds ()

- X,y is relative to parent
- i.e., 0,0 is at parent’s top-left corner

— Drawing is relative to top-left corner
- Each component has own coord system

Object status / information

Each component maintains information about its state
— setVisible (), setEnabled|()

Each component instance keeps its application info
— getClientProperty (), putClientProperty/()

Each object handles:

.- Layout (later in course...)

- Drawing

— Each object knows how to (re)create its appearance based
on its current state

— paint () // don’t override this
-« paintComponent ()
- paintBorder ()

-« paintChildren|()

Each object handles:

- Damage management

— Tell the system that something about your internal state
has changed and your image may not be correct

— repaint(), revalidate() JRipaiot Viswse. T eetbiskions.clase
- Picking

— See if a point is “inside” or “outside” Py

— contains(x,y) ’\ Fie ,.‘f\\."

— even works for nonlinear widgets ——e |
“Eﬂ) Help'l

Apz il ety

Other parts

- Input (will talk about later...)

- Actions & Application interface
— Done in terms of sending events to “listeners”

- Register as a listener to get notifications of when
things you are interested in happen

- P1 - MouselListener

Lots of parts, but...

... Is (mostly) understandable in terms of major
tasks we have laid out

- Only have to implement the specialized parts
— E.g., paint ()

Let’s build an interface...

package Demo631;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Demol implements ActionListener {
public static void main(String[] args) {..}
public JComponent buildUI () {..}
public void actionPerformed (ActionEvent e) {..}

public static void main(String[] args)

{

// instantiate an object of this class
Demol app = new Demol () ;

// create a top level frame and put an interface in it
JFrame frame = new JFrame ("Demol") ;
frame.getContentPane () .add (app.buildUI (),

BorderLayout.CENTER) ;

// arrange for it to close, then do layout and make visible
frame.setDefaultCloseOperation (

JFrame.EXIT ON CLOSE) ;
frame.pack () ;
frame.setVisible (true) ;

public JComponent buildUI ()
{

// top level container laid out as a column
JPanel pane = new JPanel (new GridLayout (0,1));

// create a button and send its action events to us
JButton bl = new JButton ("A Button!");
bl.addActionlListener (this) ;

// install the button as a child of the pane
pane.add (bl) ;

return pane;

// this gets called when we are notified
// of an ActionEvent. we asked for this wvia the
// addActionlListener () calls above
public void actionPerformed (ActionEvent e)
{
System.out.println ("Action:" +

e.getActionCommand ()) ;

What did we build?

What did we build?

0o

JFrame

GridLayout

An improved way to handle actions

As shown, action response is separated from component
causing it

Also normally have to have selection logic to pick out which
button, etc.

Can use anonymous inner classes to improve these two things

/l create a button
JButton b1 = new JButton("A Button!");

/I put the response code here using an
/[anonymous inner class
b1.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e)
{
System.out.printin("Top button was pressed...");
}
b;

/[install the button as a child of the pane
pane.add(b1);

/l create a button
JButton b1 = new JButton("A Button!");

/I put the response code here using an

b1.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e)

{

System.out.printin("Top button was pressed...");

/[install the button as a child of the pane
pane.add(b1);

Anonymous Inner Class

new ActionListener() {
public void actionPerformed(ActionEvent e)

{

-
}

Creates an instance of local unnamed subclass of ActionListener()
which has actionPerformed() method overridden

Summary

- Very high-level overview of how user interfaces work
— Widgets
— Component tree
— Events

- Rest of course

- Java Tutorial
— http://java.sun.com/docs/books/tutorial/uiswing/index.html

