
Input: Implementing
Interaction Techniques

as
Finite State Machines

2

Administration

• HW4a due today
• HW5 set today

3

Interaction Techniques

• A method for carrying out a
specific interactive task
– Example: enter a number in a

range
• Could use … (simulated) slider
• (simulated) knob
• Type in a number (text edit box)

– Each is a different interaction
technique

4

How do we implement interaction
techniques?
• Focus of today’s lecture
• Important for understanding

existing techniques
• Important for designing and

building your own:
– Why not just use existing ones?

5

Suppose we wanted to implement
an interaction for specifying a line

• Could just specify two endpoints
– click, click
– not good: no affordance,no feedback

• Better feedback is to use “rubber
banding”
– stretch out the line as you drag
– at all times, shows where you would

end up if you “let go”

6

Aside

• Rubber banding provides good
feedback

• How would we provide better
affordance?

7

Aside

• Rubber banding provides good
feedback

• How would we provide better
affordance?
– Changing cursor shape is about all

we have to work with

8

Implementing rubber banding

Accept the press for endpoint p1;

P2 = P1;

Draw line P1-P2;

Repeat

 Erase line P1-P2;

 P2 = current_position();

 Draw line P1-P2;

Until release event;

Act on line input;

9

Implementing rubber banding

• Need to get around this loop
absolute min of 5 times / sec
– 10 times better
– more would be better

• Notice we need “undraw” here

10

2nd Aside: How do we do “undraw”
in a frame buffer?
• Writes to frame buffer memory

are destructive (old background lost)

11

2nd Aside: How do we do “undraw”
in a frame buffer?
• Writes to frame buffer memory

are destructive (old background lost)

• Two major alternatives:
– XOR
– Completely redraw the image

from some description
(e.g., interactor tree)

12

What’s wrong with this code?

Accept the press for endpoint p1;

P2 = P1;

Draw line P1-P2;

Repeat

 Erase line P1-P2;

 P2 = current_position();

 Draw line P1-P2;

Until release event;

Act on line input;

13

Not event driven

• Not in the basic event / redraw
cycle form
– don’t want to mix event and sampled
– in many systems, can’t ignore events

for arbitrary lengths of time

• How do we do this in a normal
event / redraw loop?

14

You don’t get to write control
flow in event driven systems
• Control is in the hands of the user
• Basically have to chop up the

actions in the code above and
redistribute them in event driven
form
– “event driven control flow”
– need to maintain “state”

(where you are) between events and
start up “in the state” you were in
when you left off

• Examples from assignments?

15

Finite state machine controllers

• One good way to maintain “state” is
to use a state machine
 Finite State Machine (FSM)
– Has a collection of states

the system could be “in”
• One current state

– Events cause you to move from
current state to other states
(or back to same state)
• And execute actions as you move

16

FSM notation

• Circles represent states
– arrow for start state

• Begin the interaction in this state

– double circles for “final states”
• Typically not really “final”, just
denoting end of part of interaction

• Typically means you reset to start
state

17

FSM notation

• Transitions represented as arcs
– Labeled with a “symbol”

• for us an event (can vary)

– Also optionally labeled with an
action

B A

Mouse_Down / Draw_Line()

18

FSM Notation

• Means: when you are in state A
and you see a mouse down, do
the action (call draw_line), and
go to state B

B A

Mouse_Down / Draw_Line()

19

FSM Notation

• Sometimes also put actions on
states
– same as action on all incoming

transitions

B A

Mouse_Down / Draw_Line()

Draw_Line()

20

Rubber banding again
(cutting up the code)
 Accept the press for endpoint p1;

A: P2 = P1;

 Draw line P1-P2;

 Repeat

B: Erase line P1-P2;

 P2 = current_position();

 Draw line P1-P2;

 Until release event;

C: Act on line input;

21

A: P2 = P1;

 Draw line P1-P2;

B: Erase line P1-P2;

 P2 = current_position();

 Draw line P1-P2;

C: Act on line input;

FSM control for rubber banding

Press / A

Move / B

Release / C

22

How does this work:
demonstration!

5 volunteers:
 3 states
 1 event actor
 1 user

FSM control for rubber banding

23

Example #2: Button

• For drawing a line, had to
represent
– Clicking the first point
– Moving the cursor
– Clicking the second point

• What kinds of things do we
need to represent for buttons?

24

Second example: button

Press inside => highlight
Move in/out => change highlight
Release inside => act
Release outside => do nothing

25

FSM for a button?

26

FSM for a button

Press-inside / A

Leave / B Enter / C

Release / D

Release / E

27

FSM for a button

A: highlight button
B: unhighlight button
C: highlight button
D: <do nothing>
E: unhighlight; do button action

Press-inside / A

Leave / B Enter / C

Release / D

Release / E

28

How does this work:
demonstration!

7 volunteers:
 5 states
 1 event actor
 1 user

FSM control for buttons

29

Now your turn!

• Document window with text in
it and a scrollbar on one side

• What’s the FSM for the scrollbar
thumb?

• 1 user
• 1 event actor
• N(?) states

30

• What’s the FSM for the scrollbar
if the user just clicks on the
scrollbar?

• 1 user
• 1 event actor
• N(?) states

31

In general...

• Machine states represent
context of interaction
– “where you are” in control flow

• Transitions indicate how to
respond to various events
– what to do in each context

32

“Events” in FSMs

• What constitutes an “event”
varies
– may be just low level events, or
– higher level (synthesized) events

• e.g. region-enter, press-inside
• Also things you might not think of
like time passing

33

Guards on transitions

• Sometimes also use “guards”
– predicate (bool expr) before event
–  adds extra conditions required to

fire
– typical notation:

 expression: event / action
• e.g. button.enabled: press-inside / A

34

FSM are a good way to do control
flow in event driven systems

• Can do (formal or informal)
analysis or reasoning about UI
– are all possible inputs (e.g.

errors) handled from each state?
– what are next legal inputs

• can use to enable / disable

35

Implementing FSMs

state = start_state;
for (;;) {
 raw_evt = wait_for_event();
 events = transform_event(raw_evt);
 for each evt in events {
 state = fsm_transition(state, evt);
 }
}
• Note that this is basically the

normal event loop

36

Implementing FSMs

fsm_transition(state, evt)

 switch (state)

 case 0: // case for each state

 case 1: // case for next state

return state;

37

Implementing FSMs

fsm_transition(state, evt)

 switch (state)

 case 0: // case for each state

 switch (evt.kind)

 case loc_move: // trans evt

 … action … // trans action

 state = 42; // trans target

 case loc_dn:

 ...

 case 1: // case for next state

 switch (evt.kind) …

return state;

38

Implementing FSMs

fsm_transition(state, evt)

 switch (state)

 case 0: // case for each state

 switch (evt.kind)

 case loc_move: // trans evt

 … action … // trans action

 state = 42; // trans target

 case loc_dn:

 ...

 case 1: // case for next state

 switch (evt.kind) …

return state;

39

FSM Issues

• Notation
– Graphical notation is nice for

small things, but doesn’t scale
(spaghetti)

– Textual notation is not nice
• Like all GOTO control flow

• Handles sequencing well, but
not independent action
– State explosion problems

40

State explosion problems

• Suppose you had a button

• And you want to add an option
to modify its action with ctrl key
– Changes label and action

41

Modified button example

• What does tracking the control
key look like?

42

Modified button example

• Control key

43

Modified button example

• Control key x Button

x

44

Modified button example

• Transitions are really independent
  “Cross-product” machine

x

45

Cross product machines

• Replicate machine A once for
every state in machine B

46

Cross product machines

• Replicate machine A once for
every state in machine B

47

Cross product machines

• Replicate machine A once for
every state in machine B

48

Cross product machines

• Add transitions from machine B
between corresponding states

49

Cross product machines

• Correct and simplify based on
semantics

50

Cross product machines

• Correct and simplify based on
semantics

51

Now suppose we add another
independent action (shift key?)

52

Now suppose we add another
independent action (shift key?)
• Same pattern

– But, gets really ugly
– Won’t attempt it here

• Quickly get combinatoric explosion
– Big drawback of FSM

53

State machines very useful,
but do have limits
• State machines don’t handle

independent actions very well
• Mostly useful for smaller things

– Great for individual components
– Not so great for whole dialogs

• Path of least resistance is rigid
sequencing
– Ask: is this good for what I am doing?

54

 Questions?

55

Insert ticket Insert coin

Press cancel / Return ticket

Insert coin

Enough money/give change & ticket

Press cancel / Return coins & ticket

Receipt button/ give receipt

timeout

