Input: Implementing
Interaction Techniques
as
Finite State Machines



Administration

e HW4a due today
e HWS5 set today



Interaction Techniques

e A method for carrying out a
specific interactive task
—Example: enter a number In a

range

e Could use ... (simulated) slider

e (simulated) knob

eType in a humber (text edit box)

—Each is a different interaction
technique

w



How do we implement interaction
techniques?

e Focus of today’s lecture

e Important for understanding
existing techniques

e Important for designing and
building your own:

—Why not just use existing ones?



Suppose we wanted to implement
an interaction for specifying a line

e Could just specify two endpoints
—click, click
—not good: no affordance,no feedback
o Better feedback is to use “rubber
banding”
—stretch out the line as you drag

—at all times, shows where you would
end up if you “let go”



Aside

e Rubber banding provides good
feedback

e How would we provide better
affordance?

LRy



Aside

e Rubber banding provides good
feedback

e How would we provide better
affordance?

—Changing cursor shape is about all
we have to work with



Implementing rubber banding

Accept the press for endpoint pl;
P2 = P1;
Draw line Pl-P2;
Repeat
Erase line P1-P2;
P2 = current_position( );
Draw line P1l-P2;
Until release event;
Act on 1line 1nput;

LRy



Implementing rubber banding

 Need to get around this loop
absolute min of 5 times / sec

—10 times better
—more would be better

e Notice we need “"undraw” here

(o



2nd Aside: How do we do “undraw”
in a frame buffer?

e Writes to frame buffer memory
are destructive (old background lost)

Lo
o

LRy



2nd Aside: How do we do “undraw”
in a frame buffer?

e Writes to frame buffer memory
are destructive (old background lost)

e Two major alternatives:
—XOR

—Completely redraw the image
from some description
(e.g., interactor tree)

—
—



What'’s wrong with this code?

Accept the press for endpoint pl;
P2 = P1;
Draw line Pl-P2;
Repeat
Erase line P1-P2;
P2 = current_position( );
Draw line P1l-P2;
Until release event;
Act on 1line 1nput;

12

LRy



Not event driven

e Not in the basic event / redraw
cycle form

—don’t want to mix event and sampled

—In many systems, can’t ignhore events
for arbitrary lengths of time

e How do we do this in a normal
event / redraw loop?

13

LRy



¥You don’t get to write control

flow in event driven systems
e Control is in the hands of the user

 Basically have to chop up the
actions in the code above and
|f‘edistribute them in event driven
orm

—“event driven control flow”

—need to maintain “state”
(where you are) between events and
start up "in the state” you were Iin
when you left off

e Examples from assignments?

14



Finite state machine controllers

e One good way to maintain “state” is
to use a state machine

> Finite State Machine (FSM)

—Has a collection of states
the system could be “In”

e One current state
—Events cause you to move from

current state to other states
(or back to same state)

 And execute actions as you move

Lo
@)



FSM notation

e Circles represent states O

—arrow for start state O
e Begin the interaction in this state

—double circles for “final states”

@ « Typically not really “final”, just
denoting end of part of interaction

e Typically means you reset to start
state

16



FSM notation

e Transitions represented as arcs
—Labeled with a “"symbol”
efor us an event (can vary)

—Also optionally labeled with an
action

Mouse Down / Draw Line()

o} W

LRy



FSM Notation

Mouse Down / Draw Line()

o}

e Means: when you are in state A
and you see a mouse down, do
the action (call draw_line), and
go to state B

Lo
(00)

LRy



FSM Notation

e Sometimes also put actions on
states

—same as action on all incoming
transitions

Mouse Down / Draw Line()

Draw_ Line()

19

LRy



Rubber banding again
(cutting up the code)

Accept the press for endpoint pl;
A: P2 = P1;
Draw line P1-P2;
Repeat
B: Erase line P1l-P2;
P2 = current_position();
Draw line P1-P2;
Until release event:
C: |Act on line input;

20

LRy



FSM control for rubber banding

Move / B

G Press / A Release / C @

A: P2 = P1;
Draw line P1-P2;

B: Erase line P1l-P2;
P2 = current_position();
Draw line P1-P2:

C: Act on line 1nput;

21

LRy



FSM control for rubber banding

How does this work:
demonstration!

5 volunteers:
3 states
1 event actor
1 user

22

LRy



Example #2: Button

e For drawing a line, had to
represent

—Clicking the first point
—Moving the cursor
—Clicking the second point

e What kinds of things do we
need to represent for buttons?

N
w



Second example: button

Press inside => highlight
Move in/out => change highlight
Release inside => act

Release outside => do nothing

N
N

LRy



FSM for a button?

25



‘FSM for a button

Q Release / D

Enter/ C Leave /B

O

O Press-inside / A C Release / E

O

26



‘FSM for a button

Q Release / D

Enter/ C Leave /B

O Press-inside / A C Release / E

A: highlight button

B: unhighlight button

C: highlight button

D: <do nothing>

E: unhighlight; do button action

27

LRy



‘FSM control for buttons

How does this work:
demonstration!

7 volunteers:
5 states
1 event actor
1 user

28

LRy



Now your turn!

e Document window with text in
it and a scrollbar on one side

e What’'s the FSM for the scrollbar
thumb?

e 1 user
e 1 event actor
e N(?) states

29



e What's the FSM for the scrollbar
If the user just clicks on the
scrollbar?

e 1 user
e 1 event actor
e N(?) states

30

LRy



In general...

e Machine states represent
context of interaction

—"“where you are” in control flow

e Transitions indicate how to
respond to various events

—what to do in each context

31



“Fvents” in FSMs

e What constitutes an "event”
varies
—may be just low level events, or

—higher level (synthesized) events
ee.g. region-enter, press-inside

e Also things you might not think of
like time passing

32

LRy



Guards on transitions

e Sometimes also use "guards”
—predicate (bool expr) before event
— adds extra conditions required to
fire
—typical notation:

expression: event / action
e e.g. button.enabled: press-inside / A

w
w



FSM are a good way to do control
flow In event driven systems

e Can do (formal or informal)
analysis or reasoning about UI

—are all possible inputs (e.g.
errors) handled from each state?

—what are next legal inputs
ecan use to enable / disable

34



Implementing FSMs

state = start_state;
for (;) {
raw_evt = wait_for_event();
events = transform_event(raw_evt);
for each evt in events {
state = fsm_transition(state, evt);
}

}

e Note that this is basically the
normal event loop

35

LRy



Implementing FSMs

fsm_transition(state, evt)
switch (state)
case O: // case for each state

case 1: // case for next state

return state;

36

L EEERRE LR



Implementing FSMs

switch (evt.kind)
case loc_move: // trans evt
.. @action .. // trans action
state = 42; // trans target
case loc_dn:

switch (evt.kind) ..

37

L EEERRE LR



Implementing FSMs

fsm_transition(state, evt)
switch (state)

cas
S

cas
S

return

e O: // case for each state
witch (evt.kind)

case loc_move: // trans evt
.. @action .. // trans action
state = 42; // trans target
case loc_dn:

e 1: // case for next state
witch (evt.kind) ..

state;

38

L EEER R



FSM Issues

e Notation

—Graphical notation is nice for
small things, but doesn’t scale
(spaghetti)

—Textual notation is not nice

eLike all GOTO control flow

e Handles sequencing well, but
not independent action

—State explosion problems

W
(o



State explosion problems

e Suppose you had a button

@ O

O O

e And you want to add an option
to modify its action with ctrl key

—Changes label and action

40

LRy



Modified button example

e What does tracking the control
key look like?

41

LRy



Modified button example

e Control key

()
U

42

LRy



Modified button example

e Control key x Button

43

LRy



Modified button example

e Transitions are really independent
= “Cross-product” machine

()
[ xo i

LRy



€ross product machines

e Replicate machine A once for
every state in machine B

>
@

45

LRy



€ross product machines

e Replicate machine A once for
every state in machine B

P e
T

1N
(@)

LRy



€ross product machines

e Replicate machine A once for
every state in machine B

N

O
O @ O
O

47

LRy



€ross product machines

e Add transitions from machine B
between corresponding states

GE))

48

LRy



€ross product machines

e Correct and simplify based on
semantics

GE))

1N
(o)

LRy



€ross product machines

e Correct and simplify based on
semantics

&

LRy



Now suppose we add another
iIndependent action (shift key?)

)
Lol

LRy



Now suppose we add another

iIndependent action (shift key?)
e Same pattern

—But, gets really ugly
—Won't attempt it here

e Quickly get combinatoric explosion
—Big drawback of FSM

52



State machines very useful,

but do have limits
e State machines don’t handle
independent actions very well

e Mostly useful for smaller things

—Great for individual components
—Not so great for whole dialogs

e Path of least resistance is rigid
sequencing
—Ask: is this good for what I am doing?

53



Questions?

54

1l



Insert ticket

Insert coin

Insert coin

cancel / Return ticket _
Press cancel / Return coins &tjcket

Enough maney/give change & ticket

55



