Input: Interaction Techniques

Administration

Questions about homework?

Interaction techniques

- A method for carrying out a specific interactive task
 - -Example: enter a number in a range
 - could use... (simulated) slider
 - (simulated) knob
 - type in a number (text edit box)
 - say it out loud (speech recognition)
 - Each is a different interaction technique
 - -Instances of interaction styles

Interaction techniques in libraries

- Generally interaction techniques now come in the form of "widgets", "controls", "components", "interactors"
- Typically in reusable libraries
 - -e.g. widget sets / class libraries
 - -Big win in producing software
- Also need custom ones

Interaction Techniques

- Addresses complete cycle of execution and evaluation
- Typically includes
 - -(simulated) input device
 - Mapping of input signal to semantics
 - -Feedback to user
 - -(simulated) output device

Design of interaction techniques

- Three things to pay the most attention to:
 - Affordance
 - Most important for novices
 - Feedback
 - Important for all
 - Performance (mechanics)
 - Feel and difficulty
 - Most important for experts

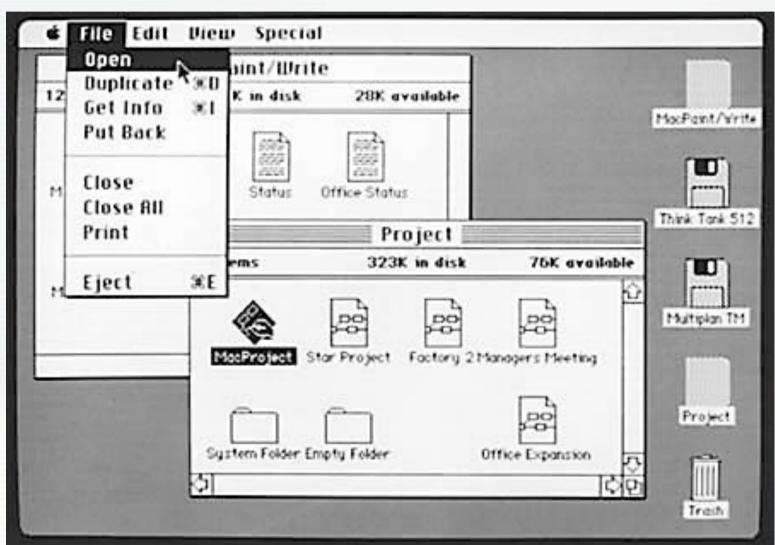
Mechanics: difficulty and "feel"

- Good models predicting physical movement difficulty (e.g., Fitts' law)
- "Feel" is trickier
 - -Can depend on physical input device
 - physical movements, forces, etc.
 - Really gets back to the difficulty of the movement, but harder to characterize
- Important for all, but especially experts or people who are going to use a technique over and over again

Fitts' law (if you haven't seen it before)

Time =
$$A + B*log_2(Dist/Size + 0.5)$$

- Predicts time to move
- Time is linearly proportional to log of "difficulty"
 - proportionality constants depend on muscle group, and device
 - Difficulty controlled by distance & required accuracy (size of target)


Fitts' law

- (True) expert performance tends to be closely related to time required for movements
 - not that closely related to learning (or overall performance) of novices
 - -still need to consider "cognitive load" of performing some motion/selection

Fitts' law

- Actual numbers from Fitts' law generally not all that helpful
 - -that level of detailed analysis is hard
- General guideline
 - Keep required movements (accuracy & distance) firmly in mind
 - Avoid device swapping
 - Avoid disturbing focus of attention

Mini case study #1 The original "Macintosh 7"

Mini case study #1 The original "Macintosh 7"

- Macintosh (1984) was first big success of GUIs
 - -originally came with 7 interactors built into toolbox (hence used for majority)
- Most not actually original w/ Mac
 –Xerox Star (+ Smalltalk & earlier)

The Macintosh 7

- Generally very well designed (iterated with real users!)
 - -very snappy performance
 - dedicated whole processor to updating them (little or no "OS")
- Huge influence
 - -These 7 still cover a lot of today's GUIs (good and bad to that)

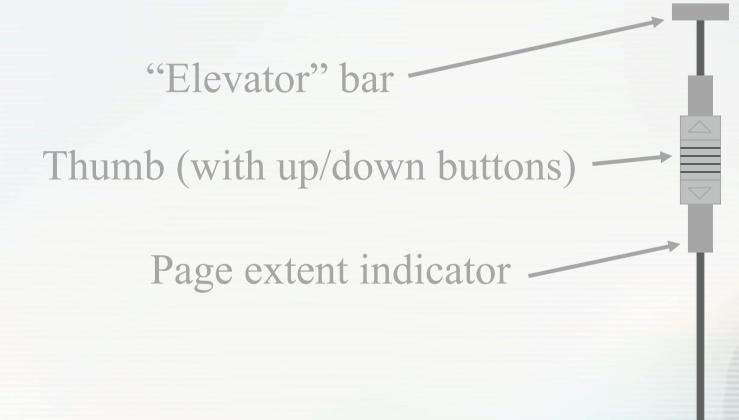
Button

Cancel

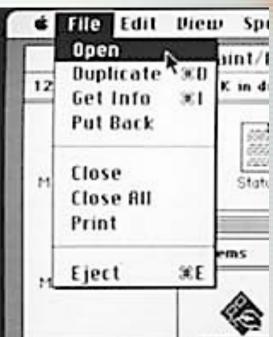
0K

- Shaped as rounded rectangles (compare to "modern" boxish look...)
- Inverted for feedback
 - -Recall Mac was pure B/W machine
 - Pseudo 3D appearance harder (and hadn't been invented yet)
- Affordance, feedback, performance?

Slider


- Used for scroll bars (but fixed size "thumb")
 - -Ridges on the thumb added later
 - -"Pogo stick" problem

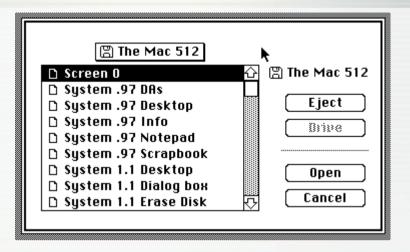
 Affordance, feedback, performance?


Aside: a different scrollbar design

Openlook scroll bar

Pulldown menu

- -This was original with Mac
- Differs slightly from Windows version you may be familiar with
 - had to hold down button to keep menu down (one press-drag-release)
- Items highlight as you go over
- Selected item flashes
- Affordance, feedback, performance?


Check boxes, radio buttons, text entry / edit fields

- Pretty much as we know them
- Single or multi-line text supported from the beginning

- O Selected Items
- O Opened Applications and Ris
- MultiFinder Only
- □ Ignore Slang Terms

File pick / save

 Much more complex beast than the others

- -built from the others + some
 - e.g. no affordance, but you could type and file list would scroll to typed name

Original Mac also had others

- Window close and resize boxes
- Drag & open file icons and folders
- Not made generally available
 - not in toolbox, so not (re)usable by other programmers

Second major release of Mac added a few

- Lists
 - -single & multiple selection
 - -from textual lists (possibly with icons)
- Hierarchical ("pull-right") menus
- Compact ("in-place") menus
 - select one-of-N pulldown
- Window zoom box

Have seen a few more added since then

- Tabbed dialogs now widely used
- Hierarchical lists (trees)
- "Combo boxes"
 - -Combination(s) of menu, list, text entry
- Typically don't see much more than that

Almost all GUIs supported with the above 10-12 interactor types

- Good ones that work well
 - -uniformity is good for usability
- But, significant stagnation
 - -"dialog box mindset"
 - -opportunities lost by not customizing interaction techniques to tasks

Mini case study 2: Menus

- Menu
 - -supports selection of an item from a fixed set
 - -usually set determined in advance
 - -typically used for "commands"
 - -occasionally for setting value (e.g., picking a font)

Design alternatives for menus

- Simple, fixed location menus (see these on the web a lot)
 - easy to implement
 - -good affordances
 - easy for novices (always same place, fully visible)
 - -Focus of attention problems
 - -Screen space hog

Popup menus

- Menu pops up under the cursor (sometimes via "other button")
 - -close to cursor
 - not under it, why?

Popup menus

- Menu pops up under the cursor (sometimes via "other button")
 - -close to cursor
 - Performance: What does Fitts' law say about this?
 - Affordance and Feedback?

Popup menus

- Menu pops up under the cursor (sometimes via "other button")
 - -close to cursor
 - Fitts law says: very fast
 - also focus not disturbed
 - -takes no screen space (until used)
 - -can be context dependent (!)
 - -poor (non-existent) affordance

Getting best of both: Mac pulldown menus

- Menu bar fixed at top of screen, with pull-down submenus
 - benefits of fixed location
 - -provides good affordance
 - -good use of space via partial popup
 - -but splits attention & requires long moves

Fitts' law effects

- Windows menus at top of windows, vs. Mac menus at top of screen
 - -Interesting Fitts' law effect
 - what is it?

Fitts' law effects

- Windows menus at top of windows, vs. Mac menus at top of screen
 - -Interesting Fitts' law effect
 - thin target vertically (dir of move)
 - high required accuracy
 - hard to pick
 - but... (anybody see it?)

• Break 15 minutes (?)

Fitts' law effects

 With menu at top of screen can overshoot by an arbitrary amount

(Example of a "barrier" technique)

-What does Fitts' law say about that?

Fitts' law effects

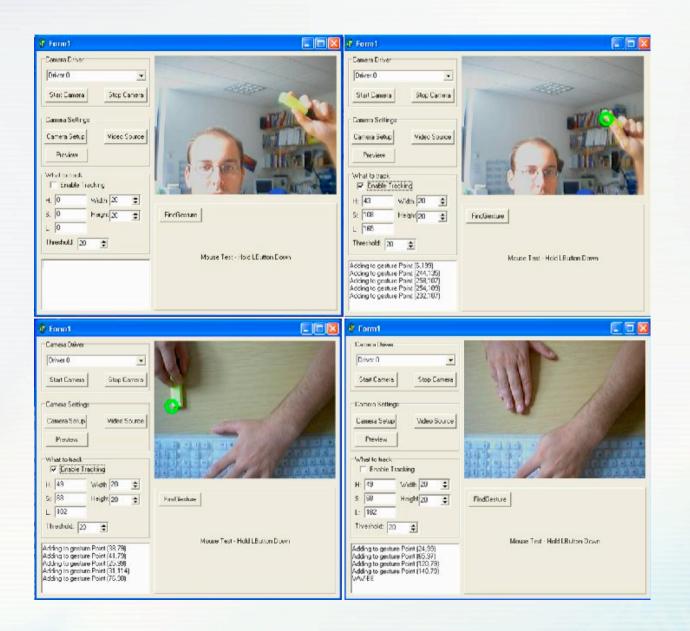
- With menu at top of screen can overshoot by an arbitrary amount
 - very large size (dominated by horizontal which is wide)
 - -Original Mac had 9" screen so distance not really an issue
 - very fast selection

Pie menus

- A circular pop-up menu
 - -no bounds on selection area
 - basically only angle counts
 - do want a "dead area" at center
 - –Performance: What are Fitts' law properties?
 - –Affordance and feedback?

Pie menus

- A circular pop-up menu
 - -no bounds on selection area
 - basically only angle counts
 - do want a "dead area" at center
 - -Fitts' law properties:
 - minimum distance to travel
 - minimum required accuracy
 - very fast


Pie menus

Why don't we see these much?

Pie menus

- Why don't we see these much?
 - Just not known
 - Harder to implement
 - -particularly drawing labels
 - -but there are variations that are easier
 - Don't scale as cleanly
 - Hard to do hierarchy

Pie Gestures

Beating Fitts' law

- Can't really beat it
 - -property of being human
 - -but you can "cheat"!
- One approach: avoid the problem
 - use a non-pointing device
 - shortcuts & fixed buttons
 - mouse wheel for scrolling

Beating Fitts' law

- Not everything can be a shortcut
- Other major approach: manipulate interface to reduce difficulty
 - -distance (put things close)
 - but not everything can be close
 - have to make them smaller!

Beating Fitts' law

- Most ways to "cheat" involve manipulating size
 - -typically can't make things bigger w/o running out of screen space (but look at that as an option)
 - -but... can sometimes make things act bigger than they are

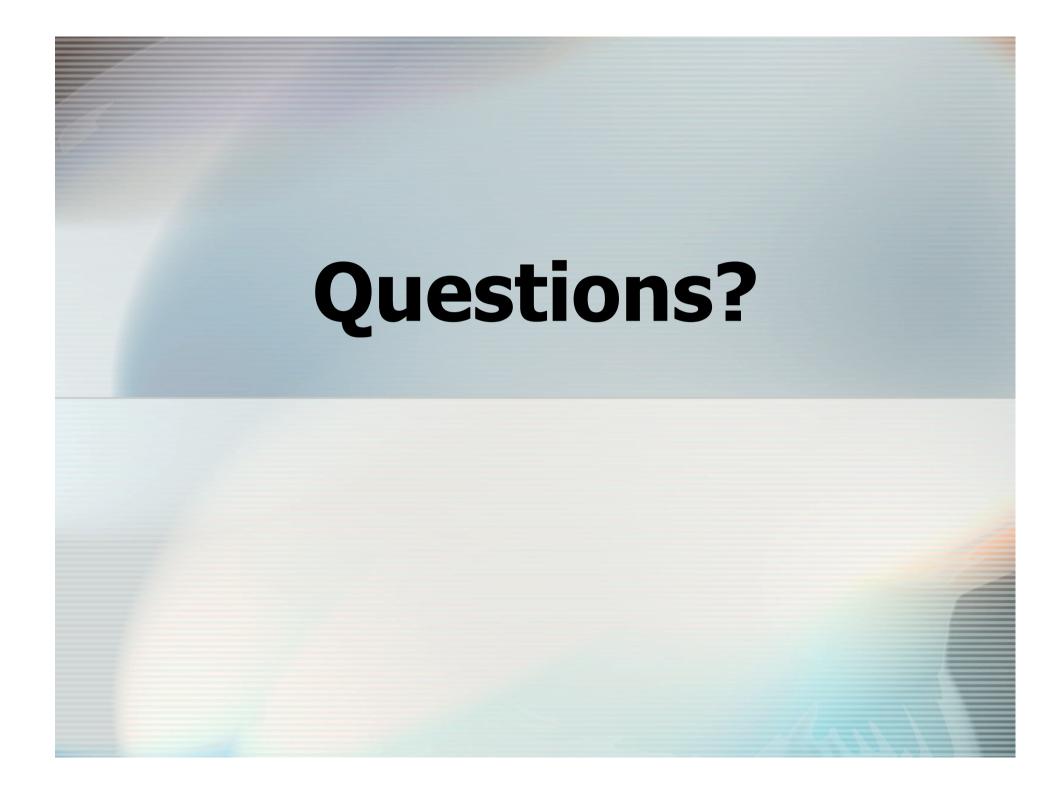
"Cheating" on target size

- Consider targets that are not just passive
 - not all movements end in "legal" or useful positions
 - -map (nearby) "illegal" or non-useful onto "legal ones"
 - hit of "illegal" position treated as legal
 - e.g. positions above Mac menubar
 - effective size bigger

Snapping (or "gravity fields")

- Treat movement to an "illegal" point as if it were movement to closest "legal" (useful / likely)
 - -Cursor or other feedback snaps to "legal" position
 - -Drawn to it as if it has gravity

Snapping


- Simplest: grids
- Constrained orientations & sizes
 - -90° & 45°, square
- More sophisticated: semantic
 - -only attach circuit diagram items at certain spots

Snapping

- Even more sophisticated: dynamic semantics
 - -Check legality and consequences of each result at every move
 - don't catch errors, prevent them!

Interaction Techniques

- Input device, mapping, feedback, output device
- Key issues of
 - Feedback, performance, affordance
- When choosing an interaction technique, tradeoff between taskspecific and ease of implementation

