
Input:  
Interaction Techniques 



2 

Administration 

•  Questions about homework? 



3 

Interaction techniques 

• A method for carrying out a specific 
interactive task 
– Example: enter a number in a range 
• could use… (simulated) slider 
• (simulated) knob 
• type in a number (text edit box) 
• say it out loud (speech recognition) 

– Each is a different interaction 
technique 
– Instances of interaction styles 



4 

Interaction techniques in 
libraries 
• Generally interaction techniques 

now come in the form of 
“widgets”, “controls”, 
“components”, “interactors”  
• Typically in reusable libraries 
– e.g. widget sets / class libraries 
– Big win in producing software 
• Also need custom ones 



5 

Interaction Techniques 

• Addresses complete cycle of 
execution and evaluation 
• Typically includes 
– (simulated) input device 
– Mapping of input signal to 

semantics 
– Feedback to user 
– (simulated) output device 



6 

Design of interaction 
techniques 

•  Three things to pay the most attention 
to: 
– Affordance  
•  Most important for novices 

– Feedback  
•  Important for all 

– Performance (mechanics) 
•  Feel and difficulty 
•  Most important for experts 



7 

Mechanics: difficulty and “feel” 

•  Good models predicting physical 
movement difficulty (e.g., Fitts’ law) 
•  “Feel” is trickier 
– Can depend on physical input device 
• physical movements, forces, etc. 

– Really gets back to the difficulty of 
the movement, but harder to 
characterize 

•  Important for all, but especially 
experts or people who are going to use 
a technique over and over again 



8 

Fitts’ law (if you haven’t seen it before) 

Time = A + B*log2(Dist/Size + 0.5) 

• Predicts time to move 
• Time is linearly proportional to log 

of “difficulty” 
– proportionality constants depend on 

muscle group, and device 
– Difficulty controlled by distance & 

required accuracy (size of target)  



9 

Fitts’ law 

• (True) expert performance tends 
to be closely related to time 
required for movements 
– not that closely related to learning 

(or overall performance) of 
novices 
– still need to consider “cognitive 

load” of performing some motion/
selection 



10 

Fitts’ law 

• Actual numbers from Fitts’ law 
generally not all that helpful 
– that level of detailed analysis is hard 

• General guideline 
– Keep required movements (accuracy & 

distance) firmly in mind 
• Avoid device swapping 
• Avoid disturbing focus of attention 



11 

Mini case study #1 
The original “Macintosh 7” 



12 

Mini case study #1 
The original “Macintosh 7” 

• Macintosh (1984) was first  
big success of GUIs 
– originally came with 7 interactors 

built into toolbox (hence used for 
majority) 

• Most not actually original w/ Mac 
– Xerox Star (+ Smalltalk & earlier)  



13 

The Macintosh 7 

• Generally very well designed 
(iterated with real users!) 
– very snappy performance 
• dedicated whole processor to 
updating them (little or no “OS”) 

• Huge influence 
– These 7 still cover a lot of today’s 

GUIs (good and bad to that) 



14 

Button 

• Shaped as rounded rectangles 
(compare to “modern” boxish look…) 

•  Inverted for feedback 
– Recall Mac was pure B/W machine 
– Pseudo 3D appearance harder 

 (and hadn’t been invented yet) 

• Affordance, feedback, 
performance? 



15 

Slider 

• Used for scroll bars  
(but fixed size “thumb”) 
– Ridges on the thumb  

added later 
– “Pogo stick” problem  

• Affordance, feedback, 
performance? 



16 

Aside: a different scrollbar 
design 
• Openlook scroll bar 

“Elevator” bar 
Thumb (with up/down buttons) 

Page extent indicator 



17 

Pulldown menu 

– This was original with Mac 
• Differs slightly from  

Windows version you  
may be familiar with 
– had to hold down button to keep 

menu down (one press-drag-release) 
•  Items highlight as you go over 
• Selected item flashes 
• Affordance, feedback, 

performance?  



18 

Check boxes, radio buttons,  
text entry / edit fields 
• Pretty much as we know them 
• Single or multi-line text 

supported from the beginning 



19 

File pick / save 

• Much more  
complex beast  
than the others 
– built from the others + some 
• e.g. no affordance, but you could 
type and file list would scroll to 
typed name 



20 

Original Mac also had others 

• Window close and resize boxes 
• Drag & open file icons and 

folders 
• Not made generally available 
– not in toolbox, so not (re)usable 

by other programmers 



21 

Second major release of Mac 
added a few 

• Lists 
– single & multiple selection 
– from textual lists (possibly with icons) 

• Hierarchical (“pull-right”) menus 
• Compact (“in-place”) menus 
– select one-of-N pulldown 

• Window zoom box 



22 

Have seen a few more added 
since then 
• Tabbed dialogs now widely used 
• Hierarchical lists (trees) 
• “Combo boxes”  
– Combination(s) of menu, list, text 

entry 

• Typically don’t see much more 
than that 



23 

Almost all GUIs supported with the 
above 10-12 interactor types 

• Good ones that work well 
– uniformity is good for usability 

• But, significant stagnation 
– “dialog box mindset” 
– opportunities lost by not 

customizing interaction 
techniques to tasks 



24 

Mini case study 2: Menus 

• Menu 
– supports selection of an item from 

a fixed set 
– usually set determined in advance 
– typically used for “commands” 
– occasionally for setting value 

(e.g., picking a font) 



25 

Design alternatives for menus 

• Simple, fixed location menus 
(see these on the web a lot) 
– easy to implement 
– good affordances 
• easy for novices (always same 
place, fully visible) 

– Focus of attention problems 
– Screen space hog 



26 

Popup menus 

• Menu pops up under the cursor 
(sometimes via “other button”) 
– close to cursor 
• not under it, why? 



27 

Popup menus 

• Menu pops up under the cursor 
(sometimes via “other button”) 
– close to cursor 
• Performance: What does Fitts’ law 
say about this? 
• Affordance and Feedback? 



28 

Popup menus 

• Menu pops up under the cursor 
(sometimes via “other button”) 
– close to cursor 
• Fitts law says: very fast 
• also focus not disturbed 
– takes no screen space (until used) 
– can be context dependent (!) 
– poor (non-existent) affordance 



29 

Getting best of both:  
Mac pulldown menus 
• Menu bar fixed at top of screen, 

with pull-down submenus  
– benefits of fixed location 
– provides good affordance 
– good use of space via partial 

popup 
– but splits attention & requires 

long moves 



30 

Fitts’ law effects 

• Windows menus at top of 
windows, vs. Mac menus at top 
of screen 
– Interesting Fitts’ law effect 
• what is it? 



31 

Fitts’ law effects 

• Windows menus at top of 
windows, vs. Mac menus at top 
of screen 
– Interesting Fitts’ law effect 
• thin target vertically (dir of move) 
 high required accuracy 
• hard to pick 
• but…   (anybody see it?)  



• Break 15 minutes (?) 

32 



33 

Fitts’ law effects 

• With menu at top of screen can 
overshoot by an arbitrary 
amount 
(Example of a “barrier” technique) 
– What does Fitts’ law say about 

that? 



34 

Fitts’ law effects 

• With menu at top of screen can 
overshoot by an arbitrary 
amount 
– very large size (dominated by 

horizontal which is wide) 
– Original Mac had 9” screen so 

distance not really an issue 
– very fast selection 



35 

Pie menus 

• A circular pop-up menu 
– no bounds on selection area 
• basically only angle counts 
• do want a “dead area” at center 

– Performance: What are Fitts’ law 
properties? 
– Affordance and feedback? 



36 

Pie menus 

• A circular pop-up menu 
– no bounds on selection area 
• basically only angle counts 
• do want a “dead area” at center 
– Fitts’ law properties: 
• minimum distance to travel 
• minimum required accuracy 
• very fast 



37 

Pie menus 

• Why don’t we see these much? 



38 

Pie menus 

• Why don’t we see these much? 
• Just not known 
• Harder to implement 
– particularly drawing labels 
– but there are variations that are easier 

• Don’t scale as cleanly  
– Hard to do hierarchy 



Pie Gestures 

39 



40 

Beating Fitts’ law  

• Can’t really beat it 
– property of being human 
– but you can “cheat”! 
• One approach: avoid the 

problem 
– use a non-pointing device 
• shortcuts & fixed buttons 
• mouse wheel for scrolling 



41 

Beating Fitts’ law 

• Not everything can be a 
shortcut 
• Other major approach: 

manipulate interface to reduce 
difficulty 
– distance (put things close) 
• but not everything can be close 
• have to make them smaller! 



42 

Beating Fitts’ law 

• Most ways to “cheat” involve 
manipulating size 
– typically can’t make things bigger 

w/o running out of screen space 
(but look at that as an option) 
– but… can sometimes make things 

act bigger than they are 



43 

“Cheating” on target size 

• Consider targets that are not just 
passive 
– not all movements end in “legal” or 

useful positions 
– map (nearby)  “illegal” or non-useful 

onto “legal ones” 
• hit of “illegal” position treated as legal 
–  e.g. positions above Mac menubar 

• effective size bigger 



44 

Snapping (or “gravity fields”) 

• Treat movement to an “illegal” 
point as if it were movement to 
closest “legal” (useful / likely) 
– Cursor or other feedback snaps to 

“legal” position 
– Drawn to it as if it has gravity 



45 

Snapping 

• Simplest: grids 
• Constrained orientations & sizes 
– 90° & 45°, square 

• More sophisticated: semantic 
– only attach circuit diagram items 

at certain spots 



46 

Snapping 

• Even more sophisticated: 
dynamic semantics 
– Check legality and consequences 

of each result at every move 
• don’t catch errors, prevent them! 



47 

Interaction Techniques 

•  Input device, mapping, feedback, 
output device 
• Key issues of 
– Feedback, performance, affordance 

• When choosing an interaction 
technique, tradeoff between task-
specific and ease of implementation 



Questions? 


