
Input
(Devices and Models)

2

Administration

• Assignment 3 (prelim) due
today

• Assignment 4 set today

3

Where we are...

• Two largest aspects of building
interactive systems: output and
input
– Have looked at basics of output
– Now look at input

4

Input

• Generally, input is somewhat harder
than output
– Less uniformity, more of a moving

target
– More affected by human properties
– Not as mature

• Will start with low level (devices)
and work up to higher level

5

Input devices

• Keyboard
– Ubiquitous, but somewhat

boring…
– Quite mature design

• QWERTY key layout
– Alternatives?

6

Christopher
Sholes 1868

QWERTY key layout

• Originally designed to spread
out likely adjacent key presses
to overcome jamming problem
of very early mechanical
typewriters
– Often quoted as “intentionally

slowing down” typing, but that’s
not true

7

QWERTY keyboard layout

• Other layouts have been
proposed
– Dvorak is best known
– Widely seen as better
– Experimental and theoretical

evidence casts doubt on this
• (Is only a little better)
• Alternating hands of QWERTY are a
win since fingers move in parallel

• Whether or not Dvorak layout is
better, it did not displace
QWERTY

– Lesson: once there is sufficient
critical mass for a standard it is
nearly impossible to dislodge
(even if there is an apparently
good reason to)

8

Economic phenomenon of “lock-
in” or “path dependence”

QWERTY keyboard layout

9

Buttons

• Similar to keyboard, but not for
typing letters
– separate collection of keys with

typically same form but different
purpose

– now seen as “function keys”
that come standard
w/ keyboards

– also show up on
e.g., mouse

Ivan Sutherland, Sketchpad, 1963

10

Buttons

• Buttons often bound to
particular commands
– e.g., function keys
– Improved quite a bit with labels
– Software changeable labels would

be ideal, but we don’t typically
get this

11

Valuators (e.g. Sliders)

• Returns a single value in range
• Major implementation alternatives:

– Potentiometer (variable resistor)
• Similar to typical

volume control
– Shaft encoders

• Sense incremental
movements

12

Locators (AKA pointing devices)

• Returns a location (point)
– two values in ranges
– usually screen position

• Examples
– Mice (current defacto standard)
– Track balls, joysticks, tablets,

touch panels, etc.

13

Locators

• Two major categories:
– Absolute vs. Relative locators

14

Absolute locators

• One-to-one mapping from
device movement to input
– e.g., tablet
– Faster
– Easier to develop motor skills
– Doesn’t scale past fixed

distances
• bounded input range

– less accurate (for same range of
physical movement)

15

Relative locators

• Relative or incremental
mapping

• E.g., maps movement into rate
of change of input
– e.g., joystick

(or TrackPoint)

16

Relative locators

– More accurate
(for same range of movement)

– Harder to develop motor skills
– Not bounded

(can handle infinite moves)

17

Q: is a mouse a relative or
 absolute locator?

(Ignore mouse acceleration for a moment)
Invented by Douglas Engelbart et al. ~1967

http://sloan.stanford.edu/MouseSite/Archive/AugmentingHumanIntellect62/Display1967.html

18

Q: is a mouse a relative or
 absolute locator?

• Answer: Neither
• Third major type:

“Clutched absolute”
– Within a range it’s absolute
– Can disengage movement (pick it

up) to extend beyond range
• picking up == clutch mechanism

19

Clutched absolute locators

• Very good compromise
– Get one-to-one mapping when “in

range” (easy to learn, fast, etc.)
– Clutch gives some of benefits of a

relative device (e.g., unbounded)

• Trackballs also fall into this
category

20

Mouse Acceleration

• Since mouse is unbounded we can
play a clever trick

•  Increase speed when mouse is
moving fast
– Middle of movement

• Normal when moving slow
– Start and end of movement

•  Interesting perceptual effect:
people basically don’t notice this

Where we
need

precision

21

Device specifics: joysticks

– self centering
– relative device
– possible to have absolute

joysticks, but scaling
is bad

22

Trackballs

• (Typically large) ball which rolls
over 2 wheels

23

Trackballs

• Clutched absolute
– but with small movement range

• Infinite input range, etc.
• Properties vary quite a bit

– scaling of movements
– mass of ball

24

Touch panel

• What kind of a device?

25

Touch panel / Tablet

• Absolute device
• Possible to do input and output

together in one place
– actually point at things on the screen

• Supports real drawing
• Resolution limited by size of

finger (“digital input”)

26

3D locators

• Can extend locators to 3 inputs
• Some fun older devices

– 3D acoustic tablet
– Wand on reels
– Multi-axis joystick

27

Lots of other devices

• Still mostly KB + mouse, but
increasing diversity
– Cameras!

• Lots of untapped potential in vision

– Microphones
• speech as data
• speech recognition

28

Lots of other devices

• Any favorites?

29

Some interesting ones

• Thumb Wheel
• DataGlove
• Motion detectors (and other sensors)

• Accelerometers

•  Identification techniques
– Magic apples

30

Using identification as input

•  If you have object identification and a
network, you can appear to attach
arbitrary amounts of information to an
object with just identification
– Use ID to store retrieve data in DB

• 64 bit ID will be unique
• 96 or 128 bits better (don’t need more)

•  Make assoc in place A, carry to place B,
identify, get data over network
⇒ data appears to have moved w/ obj

31

Specific identification
technologies

• RFID tags
• Bar codes
• Fingerprint readers
• Sub-gram resolution scales
• Speech
• Handwriting
• Walking

32

Sun Microsystems Starfire

• 1994-5, Vision of 2004
• Many different interaction styles
• CHI’94 paper, video prototyping
• Book

• Apologies for stereotypes

33

Starfire Video

• http://
www.idemployee.id.tue.nl/
g.w.m.rauterberg/videos.html

34

Prototyping These Visions

• Styles of input/output?
• Differences/similarities with

1987 Knowledge Navigator

• Break – 15 minutes

35

Input
(Part 2: Input Models)

37

Dealing with diversity

•  Saw lots of diversity in devices

– actual details of devices
(e.g., device drivers) is a real pain

– how do we deal with the
diversity?

•  Need a model (abstraction) for input
– like file systems abstract disks
– higher level & device independent

38

Input Models are Complex

•  "One of the most complex aspects of Xlib
programming is designing the event loop,
which must take into account all of the
possible events that can occur in a window.”

-- Nye & O'Reilly X Toolkit Intrinsics Programming
Manual, vol. 4, 1990, p. 241.

•  "The dispatching and handling of events is
rather complicated.”

-- Galaxy Reference Manual, v1.2, p. 20-5.

39

Logical device approach

• One approach: “logical devices”
– A logical device is characterized

by its software interface (only)
• the set of values it returns

– Rest of semantics
(how it operates) fixed by
category of device or left to the
particular device

40

Logical device approach

• Fixed set of categories
– old “Core Graphics” standard had 6

• keyboard, locator, valuator, button
• pick, stroke

•  If actual device is missing, device is
simulated in software
– valuator => simulated slider
– 3D locator => 3 knobs

• 1st step towards today’s widgets

41

Logical device approach

• Abstraction provided by logical
device model is good

• But… abstracts away too many
details (some are important)
– example:

mouse vs. pen on palm pilot
• Both are locators
• What’s the big difference?

42

Not a success but..

• Still useful to think in terms of
“what information is returned”

• Categorization of devices useful
– Two broad classes emerged

• Event devices
• Sampled devices

43

Categorization of devices

• Event devices
– Time of input is determined

by the user
• Best example: button
• When activated, creates an “event
record” (record of significant action)

44

Categorization of devices

• Sampled devices
– Time of input is determined

by the program
• Best example: valuator or locator
• Value is constantly updated

– Might best think of as continuous

• Program asks for current value
when it needs it

45

A unified model

• Anybody see a way to do both
major types of devices in one
model?

46

A unified model: the event
model

• Model everything as events
– Sampled devices are handled with

“incremental change” events
– Each measurable change in value

produces an event containing the
new value

– Program can keep track of the
current value if it wants to sample

47

Simulating sampling under the
event model of input

• Can cause problems
– lots of little events

• Can fall behind if doing a lot of
computation/redraw for every event

– machines are fast, blah blah blah
– but can get behind (sampling provided

built in throttling)

48

The event input model

• Almost all systems now use this

• An “event” is an indication that
“something potentially
significant” has just happened
– in our case user action on input device
– but, can be generalized

49

The event input model

• “Event records” are data
structures that record relevant
facts about an event
– generally just called “events”

• Event records often passed to
an “event handler” routine
– sometimes (e.g., Flex) just encode

relevant facts in parameters
instead of event record

50

Relevant facts

• What do we need to know about
each event?

51

Relevant facts

• What
• Where
• When
• Value
• Additional Context

52

What

• What (exactly) caused the event
– e.g., left mouse button went down
– for “method based” systems this

may be implicit in what handler
gets called

53

X-Windows defines 33 types of events:

1.  buttonPress
2.  buttonRelease
3.  keyPress
4.  keyRelease
5.  motionNotify
6.  enterNotify
7.  leaveNotify
8.  focusIn
9.  focusOut
10.  keymapNotify (change keymap)
11.  expose
12.  graphicsExpose
13.  noExpose
14.  colormapNotify
15.  propertyNotify
16.  visibilityNotify (become covered)
17.  resizeRequest

18.  circulateNotify
19.  configureNotify
20.  destroyNotify
21.  gravityNotify
22.  mapNotify (became visible)
23.  createNotify
24.  reparentNotify
25.  unmapNotify (invisible)
26.  circulateRequest
27.  configureRequest
28.  mapRequest
29.  mappingNotify (kbd

mapping)
30.  clientMessage
31.  selectionClear (cut & paste)
32.  selectionNotify
33.  selectionRequest

54

Where

• Where was the primary locator
(mouse) when event happened
– x,y position
– also, inside what window, object,

etc.
– this is specific to GUIs, but its

critical
• e.g., can’t tell what mouse button
down means without this

55

When

• When did the event occur
– Typically are dealing with events

from the (hopefully recent) past
• queued until program can get to them

– In absolute time or relative to
some start point

– Hopefully at resolution of 10s of
ms
• important for e.g., double-clicks

56

Value

• Input value
– e.g., ASCII value of key press
– e.g., value of valuator
– some inputs don’t have a value

• e.g. button press

57

Additional context

• Status of important buttons
– shift, control, and other modifiers
– possibly the mouse buttons

58

Extending the event model

•  Events can extend past simple user
inputs
– Extra processing of raw events to get

“higher level” events
• window / object enter & exit

– Can extend to other “things of significance”
• arrival of network traffic
• Low battery

•  Generally event is a notification of the
occurrence of a significant event and its
convenient to use that abstraction

59

Extending the event model

• Window systems typically
introduce a number of events
– window enter/exit region enter/

exit
• system tracks mouse internally so
code acts only at significant points

– Redraw / damage events
– Resize & window move events

60

Synchronization and events

• The user and the system
inherently operate in parallel
– asynchronously

• This is a producer consumer
problem
– user produces events
– system consumes them

61

Synchronization and events

• Need to deal with asynchrony
– both parties need to operate

when they can
– but can’t apply concurrency

control techniques to people

• How do we handle this?

62

Synchronization and events

• Use a queue (buffer) between

– As long as buffer doesn’t
overflow, producer does not need
to block

– Consumer operates on events
when it can

Producer Buffer Consumer

63

Implications of queued events

• We are really operating on
events from the past
– hopefully the recent past

• But sampled input is from the
present
– mixing them can cause problems
– e.g. inaccurate position at end of

drag

64

Using events from an event
queue
• Two big questions:

– What object(s) gets the event?
– What does it do with it?

• Interpret it based on what the event
is, what the object is, and what
state the object is in

65

Two major ways to dispatch
events
• Positional dispatch

– Event goes to an object based on
position of the event

• Focus-based dispatch
– Event goes to a designated object

(the current focus) no matter
where the mouse is pointing

66

Question

• Would mouse move events be
done by focus or positional
dispatch?

67

Question & answer

• Would mouse move events be
done by focus or positional
dispatch?

• It depends…
– painting: use positional
– dragging an object: need focus

(why?)

68

Dragging an object needs focus
dispatch

• Why? What if we have a big
jump?

• Cursor now outside the object
and it doesn’t get the next
event!

Object

Previous mouse position

New mouse position

69

Positional and focus based
dispatch

• Will need both
• Will need a flexible way to

decide which one is right
– sometimes we need one,

sometimes another

70

Positional dispatch

• If we are dispatching
positionally, need a way to tell
what object(s) are “under” a
location

• “Picking”

71

Pick ambiguity

• Classic problem, what if
multiple things picked?
– Two types
– Hierarchical ambiguity

• are we picking the door
 knob, the door, the house, or the
neighborhood?

72

Pick ambiguity

– Spatial ambiguity
• Which door are we picking?

73

Solutions for pick ambiguity

• No “silver bullet”, but two
possible solutions
– “Strong typing” (use dialog state)

• Turn off “pickability” for
unacceptable objects

» reject pick during traversal

74

Solutions for pick ambiguity

– Get the user involved
• direct choice

– typically slow and tedious
• pick one, but let the user reject it
and/or easily back out of it

– often better
– feedback is critical
– Need a way to get at the others

75

Input Summary

• Lots of variety in input devices
• Event model is good abstraction
• Issues

– How to support user asynchrony
– Who is each event dispatched to
– What is done with the event

76

Questions?

