
Output: Interaction
Styles and Graphics

2

Overview

•! Output styles / interaction techniques

•! Output hardware

•! Raster operations

•! Fonts

3

Bad Day

4

Reminder

•!Don’t let your users have a bad day

•!Don’t let yourselves have a bad day

5

Input Devices

•! QWERTY keyboard (other types)
•! Mouse (1, 2, or 3 buttons)
•! Other pointing devices:
–! Pens or pucks on tablets
–! Light pens on screens
–! DataGloves, eye tracking, etc.
–! Stylus on PDA

•! Speech input
•! Computer connected camera
–! Presence
–! Free-space gestures (Wii)
–! Eye-tracking

•! Sensors

6

Output Devices

•! Older
–! TTY on paper
–! 24x80 terminals “glass-TTY”
–! Vector screens

•! Raster-scan screens
–! Color, monochrome

•! LCD panels
•! Tiny, room-size, portables, normal-size
•! 3-D devices
–! Head-mounted displays
–! Stereo

•! Speech output
•! Non-speech audio

7

Examples of different types of
applications
•! Word processors
•! Drawing programs: CAD/CAM
•! Hierarchy displays (file browsers)
•! Mail readers
•! Spreadsheets
•! Hypertext document reading
–! Web browsing
–! Form-based entry

•! ATMs
•! Virtual Reality
•! Multimedia: video/animation
•! Interactive, real-time games
•! Controlling machinery

8

Diversity, diversity, diversity

Huge numbers of input devices

X

Huge numbers of output devices

X

Huge numbers of applications

= large numbers of ways to
interact with systems

9

Metaphors

•! Content Metaphors
–! Desktop
–! Paper document
–! Notebook with tabs
–! Score sheet, stage with actors
–! Accounting ledger
–! Stereo (media players)
–! Phone keypad
–! Calculator
–! Web: shopping carts
–! Quicken: Checkbook

•! Interaction Metaphors
–! Tools, agents: electronic secretary

10

User Interface Styles

•! Method for getting information from the
user or interfacing with a user

•! Some styles:
1.! Question and answer
2.! Single character commands and/or function keys
3.! Command language
4.! Menus
5.! Forms/dialogue boxes
6.! Direct manipulation
7.! WYSIWYG
•! Really sub-class of DM, not another style

8.! Gestures
9.! Natural language

11

Interaction Styles

•! Usually, interfaces provide more than one style
–! Command language for experts with menus for novices
–! Menus plus single characters

•! Appropriate style depends on type of user and task
•! Important issues
–! Who has control?
–! Ease of use for novices
–! Learning time to become proficient
–! Speed of use (efficiency) once proficient
–! Generality/flexibility/power (how much of user

interface does technique cover?)
–! Ability to show default, current values, etc.
–! Skill requirements (e.g. typing)

12

1) Question and Answer

•! Nielsen describes 1, 2, and 3 as line-oriented
•! Computer asks questions, user answers
•! Used by some simple programs and also expert

systems
•! Wizards in many products
•! Telephone interfaces: press 1 for sales, 2 for support,

…
•! Pros and cons

 + easy to implement (writeln, readln)
 + easy for novices
 - can’t correct previous errors or change your

 mind (Wizards often have previous
button)
 - can be slower for experts

13

2) Single Character Commands
and/or Function Keys
•! Function keys can be labeled

•! Pros and cons
 + fastest method for experts
 + easy to learn how to do things
 + so easier to provide telephone support
(just hit the F1 key now)
 + usually very simple to implement
 - hardest to remember which key does what
 - easy to hit wrong key by mistake

14

3) Command Language

•! User types instructions to computer in
formal language

•! Pros
 + most flexible
 + supports user initiative
 + fast for experts
 + possible to provide programming

 language capabilities for macros,
 customization, etc.

 + takes less space on screen

15

3) Command Language

•! Cons
 - hardest for novices
 - requires substantial training and
memorization
 - error rates usually high
 - syntax usually very strict
 - poor error handling
 - hard for user to tell what they can do

•! Implementation difficulty depends on
availability of tools like LEX and YACC and
the complexity of the language

16

4) Menus

•! Pros
 + very little training needed
 + shows available options
 + allows use of recognition memory (easier than

 generation)
 + hierarchy can expand selection
 + default or current selection can be shown
 + ability to show when parts are not relevant (e.g.

 greyed out)
 +can be used for commands and arguments
 + reduces keystrokes (compared to command

 languages)
 + clear structure to decision making

17

4) Menus

•! Cons
 - usable only if there are a few choices
 - slow for experienced users (need
accelerators)
 - if big hierarchy, commands can be

 hard to find
 - uses screen space

•! Most effective with pointing devices
•! Zoomable, adaptive, …

18

5) Form Filling

•!Like menus, except have text/
number fields that can be filled in
•!Often used on character terminals

(e.g. for data entry)
•!E.g. Mac/Windows dialog boxes
•!Most effective with pointing devices
•!Most user interfaces are of this

form

19

5) Form Filling

•! Pros and cons (similar to menus)
+ simplifies data entry

+ very little training needed

+ shows available options

+ allows use of recognition memory (easier
than generation)

+ ability to show defaults and current values

+ ability to show when parts are not relevant
(e.g. greyed out)

- consumes screen space

- expensive to internationalize

20

6) Direct Manipulation

•! [WIMP (Windows, Icons, Menus, Pointing
Devices) Interfaces include 6 and 7]
•! Definition
–! Visual model of the world
–! Visual objects that can be operated on
–! Results of actions are reflected in the objects

immediately
–! Objects, once operated on, can be further operated

on

•! Term coined by Ben Shneiderman
•! Original system: Sketchpad from 1962
•! “Object-oriented” from user’s point of view
–! As opposed to “function-oriented”
–! Usually select object, then give command

21

6) Direct Manipulation

•! Pros and Cons
+ user initiated
+ easy to learn, intuitive, analogical
+ fast to use for objects that are on the display
+ easily augmented with menus and forms
+ provides closure of actions and gestures
+ errors can be avoided
+ high subjective satisfaction (fun)

–! can be inconvenient and slow if user knows the name of an
undisplayed object, but must find it anyway

–! limited power; not all desired actions have DM analog
–! difficult to provide macros, other user extensible/

customizable features
–! difficult to implement

22

7) WYSIWYG

•! “What you see is what you get”
•! Like direct manipulation, but more so
•! Pros and cons: similar to DM

+ can always tell what final result will be
+ reflects the state of the object
- screen image may be hard to read/interpret,

especially if screen resolution is too low
- cannot show hidden structure (how picture was

made)
-! May be very slow at run-time (e.g. page breaks)
-! Extremely difficult to implement
-! WYSIATI: what you see is all there is: lack of

structure; no ability to show structure

23

“Non-command” or “Next-
generation” interfaces

•!“Natural” actions invoke
computer response

•!8) gestures, 9) speech, and
10) natural behavior

•!Issues: mis-interpretation,
feedback

24

8) Gestures

•! Like user would mark on paper

•! With a pen, stylus or watched by camera

•! Pros and cons:
+ can be very natural to learn

+ often faster to execute than other
techniques

+ give command and parameters together

- many gestures are hard to do with a mouse

- users must memorize gestures: no
affordances

25

9) Natural Language

•! E.g. a subset of normal English
•! Includes speech
•! Pros and cons:

+ theoretically easiest for learning
+ speaking is the fastest input technique
- rather slow for typing
- requires clarification dialog
- unpredictable
- general systems are impossible with today’s

technology

•! Research shows that if you factor in
correction times, speech input may be slower
and less natural than typing, etc.

26

10. Natural Behavior

•! No direct input to computer system:
intention
•! Location-based services
•! Context-based services
•! Pros and cons:

+ fast and can be very useful, if correct
interpretations made

+pro-active, user doesn’t have to do anything
out of ordinary

- hard to infer user intent, needs
- unpredictable and difficult to control
- feedback difficult

27

Apple’s Knowledge Navigator

•!1987, vision of the future

•!Many different interaction styles

•!Think about prototyping with lots of
different input and output devices

28

Prototyping These Visions

•!Useful?

•!How many styles of input/
output?

•!How do you prototype?

•!Break 15 minutes

29

30

Basic graphics: display devices

•!How do we get stuff on a screen?

31

Stroke models

•!Describe an image as strokes
(possibly with color & thickness)

Line ((10,4), (17,4), thick 2, red)

Circle ((19,13), radius 3, blue)

•!Maps to early vector displays
and plotters

•!Essentially all window systems
and toolkits support this kind of
drawing (due to early CG roots)

32

Problems with pure stroke
drawing models?

33

Problems with pure stroke
drawing models?

•!How do you draw this?

34

Modern display devices are
typically pixelated
•! Break display into a set of discrete picture

elements (pixels) and store color for each
–! Typically small squares
–! Image depth: number of bits per pixel

•! Until recently most prevalent device:
Cathode Ray Tube (CRT)
•! Now common: Liquid Crystal Display (LCD)
•! Also: Plasma, direct retinal display, …

•! All work from a “Frame Buffer”

35

Frame buffers

•! All of these devices work from a “Frame
buffer”
–!A piece of memory which holds values for

the colors of pixels

–!Each memory cell controls 1 pixel

–!All drawing by placing values in memory

42 D
A

C

36

More on frame Buffers

•!Each pixel actually has 3 values

–!Red, Green Blue

•!Why R, G, B?

–!R, G, and B are particular freq of
light

–!Actual light is a mix of lots of
frequencies

–!Why is just these 3 enough?

37

Why R, G, & B are enough

•!Eye has receptors (cones) that
are sensitive to one of these

–!Eye naturally quantizes/samples
frequency distribution

•!8-bits of each does a pretty
good job

–!“Full color” ! 3x8 = 24 bits

38

Other color models

•!CMY – Cyan, Magenta, Yellow
–!Subtractive primaries

–!Colors indicating what is removed
from white rather than added to black
(no light) as in RGB

–!For pigments rather than light
emitters
! printing

–!Pigment gets color from light it
absorbs and doesn’t reflect

–!Used by printers and artists

39

Other color models

•! HSV Hue (primary wavelength)

 Saturation (purity of light)

 Value (brightness)

–!User-oriented, intuitive appear of artist’s
hint, shade, tone

–!Closer to people’s intuitions of what color is

•! Note interpolation between colors in different
models gives different intermediate results

40

Aspects of pixelated displays

•! Resolution
–!How many pixels on the display
•!E.g. 1280x1024

–!Also physical size of pixels
•!Pixels per inch (or dots per inch: DPI)

•! Color depth
–!Bitmap (1 bit B/W)
–!Gray scale (2-8 bits monochrome)
–!Color mapped (typically 8 bits)
•!Mapped through a lookup table
•!At most 256 different colors, but you can pick

which 256

–!Full Color (3x8 = 24 bits)

41

Issues with pixelated displays

How do you draw this:

with this?:

Resulting roughness is Aliasing

42

Solution: Anti-Aliasing

•!Making edges appear smooth by
using blended colors

–!Pixel is not just “off” or “on”

•!Useful for text as well as lines,
etc.

43

Region-based models

•! Use the stroke model to define the outline
(infinitely thin) of a region
–! Think of it as a stencil

•! Fill the region with
–! Colors, patterns, blendings
–! Think of it as paint within the stencil

•! Postscript (or PDF) are primary examples

•! Advantage
–! Unified model (including text)
–! Independent of pixel size
–! Lower levels of system can automatically adapt to

device
•! Can be slower, but modern GPUs have plenty of speed

44

Back to pixelated or
“raster-oriented” models
•!Typically pretty close to display

HW
–!Integer coordinate system

–!0,0 typically at top-left with Y
down
•!From text operations & raster scan

–!All drawing primitives equivalent
to filling in pixel color values in
frame buffer

45

Coordinate Systems for
Drawing
•!0,0 in top left: different from

conventional axes

•!Coordinates of pixels:

–!Center of pixel?

–!Corner of pixel?

•!Matters for lines

46

Most Primitive Raster
Operation: Copy Values

•!Copy an area of the screen

copyArea(int srcx, int srcy, int w, int h,

 int destx, int desty)

•! Copies a rectangular area of the screen

–!Source rectangle to destination rectangle

47

More sophisticated, combine
pixels with values already there
•!RasterOP (BitBlt)

–!First used for B/W only (1 bit color)

–!Boolean combination operators

Clear

(0)

Set

(1)

Copy Not OR AND XOR

Src Dest

48

RasterOp Continued

•!Other combination operators

–!16 total including “not and”, “not or”

•!XOR is particularly useful

–!A ^ 1(Black) == ~A

–!A ^ 0(White) == A

–!Selective inversion

–!A ^ B ^ B == A (for any A and B)

49

RasterOp Continued

•!Doesn’t work as well in color
–!Well defined (operates on bits)
–!But: Blue ^ Violet == ??

•!Other combination operators make
more sense for color
–!Transparency
•!weighted average of colors

–!“Alpha” values (RBGA) determine how
much of source is “mixed” with
existing destination colors

50

Drawing Primitives

•! Don’t want to do everything based on
memory cells
•! Support drawing primitives
–!Lines, rectangle, ovals, polylines, polygons,

curves
–!“Scan conversion” algorithms to decide

what pixels to set (won’t cover here)
•! see e.g., Foley, van Dam, Feiner, & Hughes

–!Begin to abstract beyond “just pixels”

51

Line Properties

•!Width

•!Line styles

–!Solid, dashed 111000111000111000,
"double-dashed", patterned

•!Cap-style: butt,
round, projecting
(by 1/2 line width)

52

Polylines and
Polygons

•!End-caps:

–!Miter = point

–!Round = circle of the line width

–!Bevel = fill in notch with straight
line

•!Filled

–!which parts?

53

Curves (Splines)

•!Curves defined by cubic equations

–!x(t) = axt
3 + bxt

2 + cxt + dx
y(t) = ayt

3 + byt
2 + cyt + dy

–!Well-defined techniques from graphics
(see e.g., FvDF& H)

54

Curves (Splines)

•!Curves defined by cubic equations

–!x(t) = axt
3 + bxt

2 + cxt + dx
y(t) = ayt

3 + byt
2 + cyt + dy

–!Well-defined techniques from graphics
(see e.g., FvDF& H)

•!Bézier defined by “control” points
 end pts
 Other 2 define tangents

55

Path or region models (again)

•!Instead of drawing via fixed
shapes (rectangle, etc.)

•!Path model unifies:
–!Define a path first
•!General ops: moveTo, lineTo’s, curveTo (etc.)

–!Then draw it
•!Stroke or fill

•!With various properties of line & fill

56

Clipping

•! Can also limit the effective area of drawing
–! Any pixels outside “clip area” are left unchanged

–! Like stencils in crafts

•! May be limited set of shapes
–! Historically a single rectangle

•! Many systems now support arbitrary shape
–! Interesting drawing effects

–! Much more expensive than a single rectangle
(but we can afford it on modern systems)

57

Transformations of primitives
Translate

•! Move with respect to origin

0,0
0,0

58

Scale

•!Not necessarily uniform

•!Get flip by negative scale

59

Rotate and Shear

•!Used much less in UI work

–!Axis no longer aligned

60

Fonts and drawing strings

•!Font provides description of the
shape of a collection of chars

–!Shapes are called glyphs

•!Plus information e.g. about how
to advance after drawing a
glyph

•!And aggregate info for the
whole collection

61

Fonts

•!Typically specified by:

–!A family or typeface

•!e.g., courier, helvetica, times roman

–!A size (normally in “points”)

–!A style

•!e.g., plain, italic, bold, bold & italic

•!other possible styles: underline,
strikethrough, outline, shadow

62

Points

•!An odd and archaic unit of
measurement

–!72.27 points per inch

•!Origin: 72 per French inch (!)

–!Postscript rounded to 72/inch
most have followed

–!Early Macintosh: point==pixel
(1/75th)

63

FontMetrics

•!Objects that allow you to
measure characters, strings,
and properties of whole fonts

64

Reference point and baseline

•!Each glyph has a reference point

–!Draw a character at x,y,
reference point (not top-left)
will end up at x,y

–!Reference point defines a baseline

p

65

Advance width

•!Each glyph has an “advance
width”

–!Where reference point of next
glyph goes along baseline

pa

66

Ascent and decent

•!Glyphs are drawn both above
and below baseline

–!Distance below: “decent” of glyph

–!Distance above: “ascent” of glyph

p Ascent
Decent

67

Standard ascent and decent

•!Font as a whole has a standard
ascent and standard decent

pM Std Ascent
Std Descent

68

Leading

•!Leading = space between
 lines of text

–!Pronounce “led”-ing after the lead
strips that used to provide it

–!space between bottom of
standard decent and top of
standard ascent

•!i.e. interline spacing

69

Height

•!Height of character or font

–!ascent + descent + leading

–!But not standard across systems:
on some systems doesn’t include
leading

•!Questions?

•!Admin…

70

•!HW2b due today

•!HW3 assigned today

71

Questions?

