,

—
—

i

Debugging

RAVERLNDIUN COM COPvRcH | G M

A Y

gz 6 :
L &

o

I'VE BEEN DEBUGGING YOUR CREATION MOPEL
AND, NATURALLY, THERE WERE NO ERRORS
WHEN 1| ADD THE SIN VARIABLE, HOWEVER,
THINGS GET NASTY

A

1. WHAT Make your selection.
(%) Sympathy Basket in White ($59.99)
Quantity

1 v

2. WHO Name of deceased.

myself v

|(select) l

"We are working feverishly on writing and
documenting the Tango-PCB error
messages. In the meantime, please try not
to make any mistakes." —Preliminary
documentation for Tango, a printed circuit
board design software program by Accel
Technologies.

L EEERRE LR

Administration

e Assignment 2b due Thursday

LRy

Programming is great stuff

e It is the biggest best, and most
erX|bIe ‘set of bmldmg blocks”,
“modeling clay”, & “Erector set”
the world has ever known

e It's magic

—You can create immensely useful
things pretty much out of thin air
simply by writing down the proper
incantations

But programming is hard
(really hard)

 You have to get a lot of things exactly right
— not just mostly right

e There are more details (which have to be
exactly right) than you can humanly deal with

—>all programmers make mistakes
(lots of them)

—->Programming tends to be a humbling
experience
(it makes you feel stupid on a regular basis)

The hard part of programming

e Creating the code is tedious, but
after some practice not the hard
part

 Hard part starts when the program
doesn’t do what you think it should

—Finding those mistakes 2> debugging

Bug Origins

e Shakespeare

—Henry VI, King Edward: "So, lie thou
there. Die thou; and die our fear; For
Warwick was a bug that fear'd us all.”

e Edison
—Denotes “flaw in a mechanism”

LRy

Origin of “debugging”

e The “first computer bug”

—Grace Hopper, working on one of
the first electronic computers
(Harvard Mark 11, 1945)..... s

—Machine failed and o
operator found a moth
caught in a relay

—Taped into log book with note:
“First actual case of bug found”

3 Y-

/9

igin of “debuggmg

06w Gakom -*J‘M*foi §/~17vo 7.032 sy 015
/000 : SW - au.(,/om / 9.087 §YC P98 <covuch
137w, (032 HMP -me ﬁm ;—-Ef’%) 7.6/5 ?’ljoSﬂ Q
033y Pro » 2. 130yq26yis
Can ok 2.03067¢%

Kz)o\‘b G- ~~ 033 /‘,.uww/ww

< . o fat
Tw?[:h”\ ﬁ/_i""“/vﬂ

1402 —\)_J'ﬁlv'*ﬁ‘l ‘ COsing ‘P‘R‘l (Sme. c_kcxk)
52 stovtedt LHuwil s Hdder | Tex

T ’ -4 R Qe\m\#?o ?qr\\‘ F
L,"ﬂ"““—? t , o i . an\o'ﬁ\) i n F-»\QU\

l"\f.;t C\C"KQ\ C-a.s..

reF /50 Gndampd stade]. = e L““\ 1[““*'
o L fprm |

Debugging

e Confirming things you know
should be true until you find one
that is not

LRy

Why Debug?

 Hard, but critically important

e Any bug not detected in the design phase will
c%st ten times more to detect at the coding
phase

and an additional ten times more at the
debugging phase

e Almost nothing kills usability faster than bugs

LRy

Debugging: Famous Last Words

e "if debugging is defined as the
art of taking bugs out of a
program, programming must be
the art of putting them In
—Dijkstra

e “It's not a bug, it's a feature”
—Microsoft

Thoughts on Debugging

e "Programming is an art form
that fights back.”

.....

"No problem, David K. Pleacner
will know what to do.”

Thoughts on Debugging

e "My software never has bugs. It
just develops features.”

LRy

Why is Debugging Hard?

e Cause and effect may be hard to
connect (remote in time/space)

e Symptoms may seem random
(result of 2 bugs interacting)

e Complex interactions

e Psychological issues:
frustration, pressure, guilt

The Five P’s

Prior
Planning
Prevents
Poor
Performance

e Design your application before
you write any code

Expertise

 No substitute for practice and
experience

e Best and most experienced
programmers can be 20x more
productive than least experienced

—Very unusual to see that much
performance spread in a professional
activity!

—A lot to be gained by practice

—->Your work can pay off

—->There is something to look forward to

Debugging principles

e Bugs caught early (right after you
make them) are pretty easy to fix

—Details are in mind
—You know where to look
e Once bugs “escape” (not part of

what you just worked on) they get
much harder to find

—Details not in mind
—Much wider search space

l

E?éeking Cycle

Debugging tips

#1: Catch your bugs early

Debugging tips

#1: Catch your bugs early

#2: Only have one bug at a time!

LRy

Debugging tips

#1: Catch your bugs early

#2: Only have one bug at a time!
change 1 thing at a time

LRy

Debugging tips

#1: Catch your bugs early

#2: Only have one bug at a time!
change 1 thing at a time

=>TIp #0: “"Test early, test often,
test, test, test”

LRy

Debugging tip #3

Where's the bug?
It's probably in the code you were
just working on!

— Look there first (but not just there...)

— If you can keep this true most of the
time you will be a happy programmer

- Test, test, test
Testing is "preemptive debugging”

Debugging tip #4

e Work in small chunks (then test)

— Make “code you just worked on”
manageably

— After a small chunk verify that it is doing
what you think it is supposed to

* Note: you need to know very clearly what it is
supposed to be doing

e Devise a list of things that should be true (e.g.,
this var should have this value here) and show
yourself that they really are

— Start with chunks of maybe 10-15 lines of
code (later increase as the rate of errors in
your code drops)

Debugging tip #5

 “Throw away a lot of your code”

Debugging tip #5

 “"Throw away a lot of your code”

e A bunch of the code you write
should be just for testing

—To verify that your code does what
you think it should

e E.g., debugging print statements
(debug.writeln (<string>))

—Removed once you're reasonably sure
and can move on
Note: do remove this code, otherwise
output gets unmanageable

Types of bugs

e One way to classify
—Coding
—Logical
—Architectural or Design

LRy

Types of bugs

e Coding bugs
—Most common, easiest to debug

—"Slip”: code is written incorrectly
e 2+3*5 when you meant (2+3)*5
—Often result of not fully

understanding programming
language constructs

Types of bugs

e Logical bugs

—Steps undertaken don’t solve the
problem or carry out the task
correctly

°E.g., loop ends too late
(bug manifests as array index error)

—Harder to find and fix

LRy

Types of bugs

e Design bugs
—Program does what it was designed to
do, but that’s not the right thing
—Much harder to find and fix

—Typically have to "start over”

e Recall that almost all “"usability bugs” are
“design bugs” in traditional sense

e = programmers will naturally tend to “hate
you” (so do your own prototyping)

Types of bugs

J

e Another way to classify
—Syntax errors
—Run-time errors
—Logical errors

LRy

pes of bugs — "syntax” errors

<

e Caught by compiler
(typically won't compile)

e Mistyped or incorrect usage
—E.g., wrong number of parameters

e IDEs provides nice environment for
dealing with these

—Underlines what it doesn’t understand
on the fly

—Task list shows list of compile
problems

' B

Fixing syntax errors

e Read the message carefully

- understand it
perhaps look up message in help

e Start from the top of the list

—Often one error “cascades” causing
others later (fix of first fixes others)

e Look for easy errors to correct
(e.g., spelling mistakes)

Types of bugs — run-time errors

J

o Application tries to perform
operation that is not allowed

—Divide by zero
—Array index out of bounds
—Add a string to an integer

LRy

Fixing run-time errors

e IDEs do a good job of showing
where bad operation occurs

—But this spot may not be where
real error (real cause) is

—Start here and mentally/visually
trace backwards in the program

*E.g., How did the value involved in
this RT-error get into this variable?

Types of bugs — “logical” errors

J

e Application compiles and executes
without error, but doesn’t produce
expected results

e Most difficult to track down

e Most debugging efforts are focused
on tracking down logic errors
introduced by the programmer

Fixing “logic bugs”

e Key is clear idea of what is
supposed to happen

—First verify that this is really
happening

—Assuming it is, figure out what
about it what's happening is
incorrect (not producing the
desired result in this case)

Fixing “logic bugs”

e Print statements used to make flow and
key values visible

— Can also use debug tools in environment

e Create test input that exhibits error and
pour over print trace

— Figure out what you think is supposed to
happen with this input

— Verify that this is happening
e May take several tries inserting prints

— Rethink whether details of current logic has
flaw that leads to error in this case

e BREAK — 15 minutes

Debugging Steps

e Plan your attack

e Back up files

e Isolate code and modules
e Find the error

e Fix — don’t patch

e Test the fix

e Look for similar bugs

e Document the bug

LRy

Finding the Bug

e Characterize the bug:
How do you know it fails?

e Localize the bug:
Where does it fail?

e Isolate the bug:
What circumstances cause the bug
to appear?

LRy

l

ebugging Rules| =0 E
(www.debugginc

Yy

Understand the system

Make it fail
Quit thinking and look
The Q Indispensable Rules ™ Divide.and conger
for Finding Even the Most Change one thing at a fime
" Elusive Software and Hard- Keep an audit trail
ware Problems Check the plug
Get a fresh view

If you didn't fix it, it ain't fixed

from Debugging @ 2002 by David Agans

To get the book or down/vfzd this free poster, go to
www.debuggingrules.com

Debugging steps and strategies

e Reproducibility

—First step in fixing a bug is being able
to reproduce it

—Can't fix it if you can’t make it happen
on demand
e Find conditions where it occurs and

produce a data set or test framework that
exhibits the bug

e Need to understand cause and effect
before you start changing your code

Debugging steps and strategies

e Reduction

—Find the smallest / simplest
dataset or test that exhibits the
bug

e Reduce the problem to its essence
e Bugs are not random, there are

caused by something (somewhere)
that you need to find

—Reduce search space by reducing
complexity of test case

Debugging steps and strategies

e Deduction — a primary weapon
—What components are involved
—What path is program taking

—What is the difference between
working input and non-working

—Reduce scope of possibilities by
forming new hypotheses and
eliminating them

e finding evidence against them or
verifying them - finding the bug

Debugging steps and strategies

e Isolation
—Often useful to think about
finding where the bug is

o If you can’t find the bug where you
are, you're in the wrong place

e Remember it’'s probably in the code
you just wrote, so look there first

Debugging steps and strategies

e Isolation — one strategy:
“cutting the code in half”

e Find point where problem has manifested
(e.g., variable has bad value)

e Find a point before that and look at
conditions there
— If manifested there, bug is before that point
—If not, bug is after that point
— Repeat on the “half” the bug is in

LRy

Debugging steps and strategies

e Isolation — Related strategy:
“commenting out code”

e “cut in half” by commenting out a section
of code or a call

—If bug still happens it wasn’t in the
commented out area

— If bug stops, it was

e But note that commenting out arbitrary
code can break other things

LRy

Debugging steps and strategies

e Isolation — another strategy:
Traceback

—Find point bug is manifested

—Trace steps backwards
e Figure out (possibly working on paper):
“At this point, this should be true”

—Verify that it is true

—Possibly with aid of additional info
(e.g., prints)

Another strategy

e Often helps to debug with
someone else

—They don’t necessarily need to
understand your program

—Process of explaining it to them is
often very helpful

—"Outsider” may be able be able to
see wrong assumptions you‘'ve
made

Experience

o Get better at previous steps

e Also recognize previously seen
bugs

e Leverage experience of others:
programmers and Web

LRy

Tenacity

Angst Technology

by Barry T. Smith

You
HAVE PISHONORED

ME FOR TOO LONG,

EVEN THOUGH
FOR EVERY ONE OF
YOU | STRIKE DOWN,
ANOTHER TWO MAY
TAKE HIS PLACE...

PEBUGGING
IS A STATE OF

WWW. INKTANK.COM

@ 2000 BARRY T. SMITH

Tenacity

e No real randomness in execution

e Computers doing what you
programmed them to do

e By solving bugs, gain more
experience and confidence, and
become much better programmer
—Anticipate errors

—Code in manner less likely to produce
bugs

Preventive measures

e Write clean, easy to read code

e Comment your code as you
write it
—Seems like this has nothing to do
with debugging, but it does

—This helps with “figure out
(exactly) what it's supposed to be
doing here”

Preventive measures

e Make one change at a time

e Test code
—Unit test: functional blocks

—Integration test: interactions
between those blocks

—Test with invalid and valid data

Preventive measures

e Defensive programming
— A gram of prevention is worth a kilo of cure
— Add error checking code and throw
exceptions

o If “this is supposed to be true there” put in code
to test it (Tassertions”)

— Put in “sanity checks”

— Work out what assumptions (e.g., about
iIncoming parameters or state of the system
at call) must be true for proper execution
and put in a run-time test for them

LRy

Preventive Measures

e Be scientific

—Formulate hypothesis, predict,
run program, provide input,
observe behavior and confirm/
refute hypothesis

LRy

Debugging issues

e Understanding

— If you have a solution but don’t understand
why it works, you can‘t rely on it
e May be simply hiding error
e May be introducing new bug

— Counteracting bugs is typically not good because they
may "break separately” in other circumstances

e Partial solutions
— If you have a solution but it doesn’t solve
all the problems

e May not have found the real solution
e May have multiple bugs

LRy

Other Important Strategies

e Prioritize which features can be
omitted

e Incubate: take a break

—Breathe and stretch
—Drink water

e Articulate problem
e Brainstorm

Strategies

e Desk-check your code
—Can do several hundred lines/hour

— Best software engineers write code
999% correct

—1 out of 100 lines is wrong

—We are not the best software
engineers

—Find several bugs/hour, better use of
time than spending hours fixing the
bugs

Strategies

o II;rint statements are your friend,
ut ...

—Cause you to edit/recompile

—Often ?uess incorrectly about what
variable to print

—Often print too much, too hard to
review

— Mix of diagnostics and others hard to
deal with

—Have to eventually disable diagnostics
—Checkpointing

Tools

e Profiler

—Tells you where your code Is
spending time when executing

—Once bug found, think about what
you could have done (process-
wise) that would have avoided
the bug

Tools

e Breakpoints

—Stop execution of program at
specific points

LRy

Visual Studio

e Command Window: Immediate
Mode

—Enter expressions for evaluation
—Execute statements

—Print variable values

—Change variable values

e Breakpoints
—Regular, conditional

Visual Basic

e Bookmarks
e Find all references to an object

e Debug class
—WriteLine
—Indent
—Assert(clause, message)

LRy

Things not to do

e Ignore errors and hope they go
away

—Can’t “let them escape”

—They won’t go away on their own, just
multiply when combined

e Make random changes
—Need a strategy

e Run program over and over hoping
that it will start working

 Need an approach
off the mark by Mark Parisi

w w w . .o ffthemar k. com

LoOKS LIKE THEIR ATTEMPTS AT

DEBUGGING THE SOFTWARE ARE
\gi»lo VESPERATE. ..

e Need confidence

Hope for Inexperienced

e Studies of experienced
programmers have found that
there is a 20-to-1 difference in
the time it takes for an
experienced programmer
compared to an inexperienced
programmer to find the same
set of errors

= get better over time

Iy
)

1}

|

b
D
)
3
3

e Questions?

