
Debugging

 "We are working feverishly on writing and
documenting the Tango-PCB error
messages. In the meantime, please try not
to make any mistakes." —Preliminary
documentation for Tango, a printed circuit
board design software program by Accel
Technologies.

Administration

• Assignment 2b due Thursday

Programming is great stuff

•  It is the biggest, best, and most
flexible “set of building blocks”,
“modeling clay”, & “Erector set”
the world has ever known

•  It’s magic
– You can create immensely useful

things pretty much out of thin air
simply by writing down the proper
incantations

But programming is hard
(really hard)

•  You have to get a lot of things exactly right
–  not just mostly right

•  There are more details (which have to be
exactly right) than you can humanly deal with

 all programmers make mistakes
 (lots of them)

 Programming tends to be a humbling
 experience
(it makes you feel stupid on a regular basis)

The hard part of programming

• Creating the code is tedious, but
after some practice not the hard
part

• Hard part starts when the program
doesn’t do what you think it should
– Finding those mistakes  debugging

Bug Origins

• Shakespeare
– Henry VI, King Edward: “So, lie thou

there. Die thou; and die our fear; For
Warwick was a bug that fear’d us all.”

• Edison
– Denotes “flaw in a mechanism”

Origin of “debugging”

• The “first computer bug”
– Grace Hopper, working on one of

the first electronic computers
(Harvard Mark II, 1945)
– Machine failed and

operator found a moth
caught in a relay
– Taped into log book with note:

“First actual case of bug found”

Origin of “debugging”

Debugging

• Confirming things you know
should be true until you find one
that is not

Why Debug?

•  Hard, but critically important

•  Any bug not detected in the design phase will
cost ten times more to detect at the coding
phase
 and an additional ten times more at the
debugging phase

•  Almost nothing kills usability faster than bugs

Debugging: Famous Last Words

• “if debugging is defined as the
art of taking bugs out of a
program, programming must be
the art of putting them in
– Dijkstra

• “It’s not a bug, it’s a feature”
– Microsoft

Thoughts on Debugging

• “Programming is an art form
that fights back.”

Thoughts on Debugging

• “My software never has bugs. It
just develops features.”

Why is Debugging Hard?

• Cause and effect may be hard to
connect (remote in time/space)
• Symptoms may seem random

(result of 2 bugs interacting)
• Complex interactions
• Psychological issues:

frustration, pressure, guilt

The Five P’s

 Prior
 Planning
 Prevents
 Poor
 Performance

• Design your application before
you write any code

Expertise

• No substitute for practice and
experience

• Best and most experienced
programmers can be 20x more
productive than least experienced
– Very unusual to see that much

performance spread in a professional
activity!
– A lot to be gained by practice
 Your work can pay off
 There is something to look forward to

Debugging principles

• Bugs caught early (right after you
make them) are pretty easy to fix
– Details are in mind
– You know where to look
• Once bugs “escape” (not part of

what you just worked on) they get
much harder to find
– Details not in mind
– Much wider search space

Debug Cycle

Bug-Seeking Cycle

Debugging tips

#1: Catch your bugs early

Debugging tips

#1: Catch your bugs early

#2: Only have one bug at a time!

Debugging tips

#1: Catch your bugs early

#2: Only have one bug at a time!
 change 1 thing at a time

Debugging tips

#1: Catch your bugs early

#2: Only have one bug at a time!
 change 1 thing at a time

 Tip #0: “Test early, test often,
 test, test, test”

Debugging tip #3

 Where’s the bug?
It’s probably in the code you were
just working on!
–  Look there first (but not just there…)
–  If you can keep this true most of the

time you will be a happy programmer
  Test, test, test

 Testing is “preemptive debugging”

Debugging tip #4

•  Work in small chunks (then test)
– Make “code you just worked on”

manageably

– After a small chunk verify that it is doing
what you think it is supposed to
• Note: you need to know very clearly what it is

supposed to be doing
• Devise a list of things that should be true (e.g.,

this var should have this value here) and show
yourself that they really are

– Start with chunks of maybe 10-15 lines of
code (later increase as the rate of errors in
your code drops)

Debugging tip #5

•  “Throw away a lot of your code”

Debugging tip #5

•  “Throw away a lot of your code”
• A bunch of the code you write

should be just for testing
– To verify that your code does what

you think it should
• E.g., debugging print statements

(debug.writeln(<string>))
– Removed once you’re reasonably sure

and can move on
Note: do remove this code, otherwise
output gets unmanageable

Types of bugs

• One way to classify
– Coding
– Logical
– Architectural or Design

Types of bugs

• Coding bugs
– Most common, easiest to debug
– “Slip”: code is written incorrectly
• 2+3*5 when you meant (2+3)*5

– Often result of not fully
understanding programming
language constructs

Types of bugs

• Logical bugs
– Steps undertaken don’t solve the

problem or carry out the task
correctly
• E.g., loop ends too late
(bug manifests as array index error)

– Harder to find and fix

Types of bugs

• Design bugs
– Program does what it was designed to

do, but that’s not the right thing
– Much harder to find and fix
– Typically have to “start over”

•  Recall that almost all “usability bugs” are
“design bugs” in traditional sense
•   programmers will naturally tend to “hate

you” (so do your own prototyping)

Types of bugs

• Another way to classify
– Syntax errors
– Run-time errors
– Logical errors

Types of bugs – “syntax” errors

• Caught by compiler
(typically won’t compile)
• Mistyped or incorrect usage
– E.g., wrong number of parameters

•  IDEs provides nice environment for
dealing with these
– Underlines what it doesn’t understand

on the fly
– Task list shows list of compile

problems

Fixing syntax errors

• Read the message carefully
  understand it

 perhaps look up message in help
• Start from the top of the list
– Often one error “cascades” causing

others later (fix of first fixes others)

• Look for easy errors to correct
(e.g., spelling mistakes)

Types of bugs – run-time errors

• Application tries to perform
operation that is not allowed
– Divide by zero
– Array index out of bounds
– Add a string to an integer

Fixing run-time errors

• IDEs do a good job of showing
where bad operation occurs
– But this spot may not be where

real error (real cause) is
– Start here and mentally/visually

trace backwards in the program
• E.g., How did the value involved in
this RT-error get into this variable?

Types of bugs – “logical” errors

• Application compiles and executes
without error, but doesn’t produce
expected results

• Most difficult to track down
• Most debugging efforts are focused

on tracking down logic errors
introduced by the programmer

Fixing “logic bugs”

• Key is clear idea of what is
supposed to happen
– First verify that this is really

happening
– Assuming it is, figure out what

about it what’s happening is
incorrect (not producing the
desired result in this case)

Fixing “logic bugs”

•  Print statements used to make flow and
key values visible
– Can also use debug tools in environment

•  Create test input that exhibits error and
pour over print trace
– Figure out what you think is supposed to

happen with this input
– Verify that this is happening
• May take several tries inserting prints

– Rethink whether details of current logic has
flaw that leads to error in this case

• BREAK – 15 minutes

Debugging Steps

• Plan your attack
• Back up files
•  Isolate code and modules
• Find the error
• Fix – don’t patch
• Test the fix
• Look for similar bugs
• Document the bug

Finding the Bug

• Characterize the bug:
How do you know it fails?

• Localize the bug:
Where does it fail?

•  Isolate the bug:
What circumstances cause the bug
to appear?

Debugging Rules!
(www.debuggingrules.com)

Debugging steps and strategies

• Reproducibility
– First step in fixing a bug is being able

to reproduce it
– Can’t fix it if you can’t make it happen

on demand
• Find conditions where it occurs and

produce a data set or test framework that
exhibits the bug
• Need to understand cause and effect

before you start changing your code

Debugging steps and strategies

• Reduction
– Find the smallest / simplest

dataset or test that exhibits the
bug
• Reduce the problem to its essence
• Bugs are not random, there are
caused by something (somewhere)
that you need to find
– Reduce search space by reducing

complexity of test case

Debugging steps and strategies

• Deduction – a primary weapon
– What components are involved
– What path is program taking
– What is the difference between

working input and non-working
– Reduce scope of possibilities by

forming new hypotheses and
eliminating them
• finding evidence against them or

verifying them  finding the bug

Debugging steps and strategies

• Isolation
– Often useful to think about

finding where the bug is
• If you can’t find the bug where you
are, you’re in the wrong place
• Remember it’s probably in the code
you just wrote, so look there first

Debugging steps and strategies

•  Isolation – one strategy:
“cutting the code in half”
• Find point where problem has manifested

(e.g., variable has bad value)
• Find a point before that and look at

conditions there
– If manifested there, bug is before that point
– If not, bug is after that point
– Repeat on the “half” the bug is in

Debugging steps and strategies

•  Isolation – Related strategy:
“commenting out code”
• “cut in half” by commenting out a section

of code or a call
– If bug still happens it wasn’t in the

commented out area
– If bug stops, it was

• But note that commenting out arbitrary
code can break other things

Debugging steps and strategies

• Isolation – another strategy:
Traceback
– Find point bug is manifested
– Trace steps backwards
• Figure out (possibly working on paper):
“At this point, this should be true”
– Verify that it is true
– Possibly with aid of additional info

(e.g., prints)

Another strategy

• Often helps to debug with
someone else
– They don’t necessarily need to

understand your program
– Process of explaining it to them is

often very helpful
– “Outsider” may be able be able to

see wrong assumptions you’ve
made

Experience

• Get better at previous steps
• Also recognize previously seen

bugs
• Leverage experience of others:

programmers and Web

Tenacity

Tenacity

• No real randomness in execution
• Computers doing what you

programmed them to do
• By solving bugs, gain more

experience and confidence, and
become much better programmer
– Anticipate errors
– Code in manner less likely to produce

bugs

Preventive measures

• Write clean, easy to read code
• Comment your code as you

write it
– Seems like this has nothing to do

with debugging, but it does
– This helps with “figure out

(exactly) what it’s supposed to be
doing here”

Preventive measures

• Make one change at a time
• Test code
– Unit test: functional blocks
– Integration test: interactions

between those blocks
– Test with invalid and valid data

Preventive measures

•  Defensive programming
– A gram of prevention is worth a kilo of cure
– Add error checking code and throw

exceptions
•  If “this is supposed to be true there” put in code

to test it (“assertions”)

– Put in “sanity checks”
– Work out what assumptions (e.g., about

incoming parameters or state of the system
at call) must be true for proper execution
and put in a run-time test for them

Preventive Measures

• Be scientific
– Formulate hypothesis, predict,

run program, provide input,
observe behavior and confirm/
refute hypothesis

Debugging issues

•  Understanding
– If you have a solution but don’t understand

why it works, you can’t rely on it
• May be simply hiding error
• May be introducing new bug
–  Counteracting bugs is typically not good because they

may “break separately” in other circumstances

•  Partial solutions
– If you have a solution but it doesn’t solve

all the problems
• May not have found the real solution
• May have multiple bugs

Other Important Strategies

• Prioritize which features can be
omitted
• Incubate: take a break
– Breathe and stretch
– Drink water

• Articulate problem
• Brainstorm

Strategies

• Desk-check your code
– Can do several hundred lines/hour
– Best software engineers write code

99% correct
– 1 out of 100 lines is wrong
– We are not the best software

engineers
– Find several bugs/hour, better use of

time than spending hours fixing the
bugs

Strategies

• Print statements are your friend,
but …
– Cause you to edit/recompile
– Often guess incorrectly about what

variable to print
– Often print too much, too hard to

review
– Mix of diagnostics and others hard to

deal with
– Have to eventually disable diagnostics
– Checkpointing

Tools

• Profiler
– Tells you where your code is

spending time when executing

– Once bug found, think about what
you could have done (process-
wise) that would have avoided
the bug

Tools

• Breakpoints
– Stop execution of program at

specific points

Visual Studio

• Command Window: Immediate
Mode
– Enter expressions for evaluation
– Execute statements
– Print variable values
– Change variable values
• Breakpoints
– Regular, conditional

Visual Basic

• Bookmarks
• Find all references to an object
• Debug class
– WriteLine
– Indent
– Assert(clause, message)

Things not to do

•  Ignore errors and hope they go
away
– Can’t “let them escape”
– They won’t go away on their own, just

multiply when combined
• Make random changes
– Need a strategy
• Run program over and over hoping

that it will start working

• Need an approach

• Need confidence

Hope for Inexperienced

• Studies of experienced
programmers have found that
there is a 20-to-1 difference in
the time it takes for an
experienced programmer
compared to an inexperienced
programmer to find the same
set of errors

 get better over time

• Questions?

