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Administration 

• Questions about assignments 
due and assignments assigned 
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What we will talk about 

• Ways to organize UI code 

• Different “models” of user 
interfaces as systems/programs 
– How they are structured and the parts 

that make them up 
– Conceptually and in practice 
– Separation of UI and rest of software 

= “semantics” 
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Semantic 

•  Functionality of system; what can be 
expressed 

•  What information is needed for each 
operation on object 

•  What errors can occur 
•  Semantic vs. UI is key issue in UI tools 
•  “Semantic Feedback” 

– Depends on meaning of items 
– Example: only appropriate items highlight 

during drag 
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Conceptual 

• Key application concepts that must 
be understood by user 

• User model 
– objects and classes of objects 
– Relationships among them 
– Operations on them 

• E.g. text editor 
– Objects = characters, files, paragraphs 
– Relationships = files contain paragraphs 

contain characters 
– Operations = insert, delete, etc. 
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The User Interface 

• Typically want to think of “UI” as 
only one component of an 
overall system 
– The part that “deals with the user” 
– Distinct from the “functional 

core” (AKA the “application”) 
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Separation of UI from “Appl” 

• Really good reasons to want 
separation of UI  
(in general: “separation of concerns”) 

– Modularity (good software design) 
– Different expertise needed 
– Don’t want to iterate the whole thing 
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Unfortunately this is typically 
very hard to do in practice 

• More and more of interactive 
programs are tightly coupled to UI 
(in some cases everything) 
– Generally need to structure around 

user concepts 
– UI structure “sneaks into” application 
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Separation of concerns is a central 
theme of UI organization 

• A continual challenge 
• A continual tension and tradeoff 
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UI tasks 

• So far have: 

• Clearly more structure  
could be useful 

UI Appl 
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UI tasks 

• Basic parts of UI 

Appl 
Input 

Output 

Appl 

Inter 
UI 

Core 
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UI tasks 

• Basic flow 

Appl 
Input 

Output 

Appl 

Inter 
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UI tasks 

•  Basic flow 

Note relation to : Norman’s 7 stages 
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Input 

Output 
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UI tasks 

•  Basic flow 

Note relation to : Norman’s 7 stages 

Appl 
Input 

Output 
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How do we connect these 
disparate parts into working whole 
• Tempting to organize system 

modules around these boxes  
– One module for input, one for 

output, etc. 
– Has been tried  

(“Seeheim model” ~1983) 
Didn’t work real well 
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Organizing UI as “3 big boxes” 
doesn’t work well because... 
• Modern (“direct manipulation”) 

interfaces tend to be collections of 
quasi-independent agents 
– Each “object of interest” is separate 

(but still needs the 3 parts) 
– e.g. a button 

• has “button-like” screen appearance 
• acts on input in a “button-like” way 
• etc. 
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Leads to object-based 
organization In 

Out 
A

ppl 
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Object-oriented techniques 

• Key features 
– Separation of “objects of interest” into 

encapsulated entities that implement 
that “object” 
• Store information about it  

– It’s “state” (“properties” in Flex) 

• Provide implementation of actions on 
that data (“methods”) 

– Combines data & action into one thing 
instead of traditional approach of  
data & procedures operating on it 
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Object-oriented techniques 

•  Key features 
– Abstract (& hide) the implementation 

details 
• Present “what” to outside world so that details 

of “how” can be changed w/o breaking other 
code 

–  Classically no data access, only call methods 

• Reduces complexity by limiting dependencies 
• Example: Stack data structure 

–  Just provide operations: push(), pop(), isEmpty() 
–  Could be implemented with array or linked list 
–  Can change implementation without breaking any code 

that uses stacks! 
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Object-oriented techniques 

• Key features 
– Support reuse of code 

• Can base new code (new classes) on 
old code  

– Objects defined by a class 
• Represents of “type of thing” 
• Provides definition of methods 
appropriate to that type of thing 

• Provides implementation 
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Object-oriented techniques 

•  Key features 
– Object created as an “instance” of the class 

• Object gets own storage and uses methods 
provided by class 

– New classes can be created by 
specialization of a class  
(“inheritance”, “subclassing”) 
• Selectively replace (“override”) implementation 

of methods and other details “inherited” from 
another class (“superclass”, “base class”) 

• Substitutability: Object of subclass can be used 
anywhere object of superclass is expected 
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Object-oriented techniques 

• Became popular along with GUIs, 
direct manipulation 

• Buttons, sliders, icons, act like 
separate entities ( objects) 
– Have internal state, persistence 
– React according to “what they are” 

• OO was originally developed 
(SmallTalk) and became popular (C
++) largely due to GUIs 
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Leads to object-based 
organization In 

Out 
A

ppl 
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Leads to object-based 
organization 
• Each object implements 

 each aspect 
– In a way that reflects what it is 

In 

Out 
A

ppl 
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Leads to object-based 
organization 

• Objects organized  
hierarchically  
– Normally reflecting spatial 

containment relationships 

 “Component trees” 

In 

Out 

A
ppl 
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Component Trees 

• Central concept for UI org 
• Everything is done  

through this tree 
– Build an interface  

== build a tree 
– Change an interface 

== change a tree 

frame 

column 

button button 
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Challenge:  
Separation of concerns 

• Challenge is doing all this 
different stuff in a single object 
without creating a hopelessly 
large and complicated beast 
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One organizational approach 

•  Model-View-Controller (MVC) 
– Smalltalk ~1980 
– Idea: Separate out parts 

• output / presentation (View) 
• user input (Controller) 
•  “semantics”  / data (Model) 

– Goals 
• Different kinds of views and controllers for same 

model  
• Create (subclass?) a new model, then re-use 

existing views and controllers 
• Multiple views (and controllers) for one model 
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MVC 

Model 

View 

Controller 
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MVC 

Model 

View 

Controller 
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MVC 

•  Model  
– Can be simple as an integer for a counter, 

or string for an text entry box 
– Or as complex as a molecular simulator 

•  View 
– Everything graphical (output) 
– Layout, subviews, composites 

•  Controller 
– Schedule interactions with other VCs 
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MVC interaction cycle 

• User operates input device 
• Controller notifies model to change 
• Model broadcasts change 

notifications to its dependent views 
• Views schedules update of screen  

– May query model to get all details 
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MVC issues 

• Views and controllers tightly 
coupled 
– Rarely implemented separately in 

practice 

• What is in each part? 
• Complexity when we have sub-

parts 
– Sub-views, sub-controllers, sub-

models 
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Exercise: MVC partitioning 

• File picker 

• MP3 Player 

• Text editor 
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What do we have to help us 
implement UI systems? 

• Layered set of tools… 

(A different way to slice concepts) 



36 

Layers of UI Software 

Application Program 
“High-Level” Tools 

Toolkit 
Window System 

OS 
Hardware 

Tools 
Supporting 
Each Layer 
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Layers of UI Software as They Tend to 
Occur in Commercial Systems… 

Application Program 
“High-Level” Tools 

Toolkit 
Window System 

OS 
Hardware 

Tools 
Supporting 
Each Layer OS 
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Layers of UI Software 

Application Program 
“High-Level” Tools 

Toolkit 
Window System 

OS 
Hardware 

Tools 
Supporting 
Each Layer 
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Layers of UI Software 

Application Program 
“High-Level” Tools 

Toolkit 
Window System 

OS 
Hardware 

Tools 
Supporting 
Each Layer 

Primary focus of 
this class 

Embodies 
organization 

Use these if you can! 
(Built on TK layer) 
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Quick Look at the tools 
landscape 
• Today’s tools are highly 

successful 
– Window Managers, Toolkits, 

Interface Builders are ubiquitous 
– Most software built using them 
– Are based on many years of HCI 

research 
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Window Systems 

•  Provides a virtual device abstraction 
– Each program can act as if it has a 

complete control over screen & input 
– Window system manages and controls 

multiple contexts, logically separated, 
but implemented together 
• Analogous to OS management of CPU and 

memory 
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Window Managers (History) 

•  Multiple (tiled) windows in research 
systems of 1960’s: NLS, etc. 

•  Overlapping in Alan Kay’s thesis (1969) 
•  Smalltalk (1974) at Xerox PARC 
•  Successful because multiple windows 

help users manage scarce resources: 
– Screen space and input devices 
– Attention of users 
– Affordances for reminding and finding 

other work 
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Windows, components 

•  “Window System” 
– Programming interface 
– Output graphics operations to draw 

clipped to a window 
– Input from mouse and keyboard to 

appropriate window 
•  “Window Manager” 

– User interface to windows themselves 
– Decorations on windows 
– Mouse and keyboard commands to control 

windows. 
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Windows, cont. 

•  Many systems combine Window System 
and Window Manager 
– SunTools, Macintosh, MS Windows, NeXT 

•  Others allow different WM on same WS 
– X, NeWS 
– Allows diversity and user preference  

•  Also different WS on same hardware 
– SunTools, X, NeWS on Unix machines 
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Window System: Output Model  

• Graphics commands that the 
programs can use 

• All must go through window 
system so they are always clipped 
– Usually can only draw with what the 

window system provides  
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Window System: Output Model  

•  Oldest systems (SunTools, etc.) simple 
primitives 

•  Later (Macintosh, X Windows) more 
sophisticated 
– Filled polygons, splines, colors, clipping 
– Still, all 2-D objects 
– Extensions for 3D 

•  Newer systems (e.g., Java Swing) have 
quite sophisticated output model 
– Fully scalable, transparency, … 
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Window System: Input Model 

• How input from user is handled. 
• Most only support keyboard and 

mouse 
• All modern WS use similar model: 

– Events generated and passed to 
applications 
• “Event records” containing significant 

details of a user input action 
– type of input, x,y of mouse, time, etc.  

• Processed asynchronously (queued) 
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A model for input handling 
Semantic-Syntactic-Lexical levels 
• Comes from analogy to 

programming languages 
– Lexical:  

 characters form symbols  
(keywords, operators, comments, etc.) 

– Syntactic:  
 symbols organized by a grammar  
(into constructs: procedures etc.) 

– Semantic:  
 meaning derived from constructs  
(so code can be generator or lang. interpreted) 
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A model for input handling 
Semantic-Syntactic-Lexical levels 
•  For UI 

– Lexical: the basic inputs  
•  Events: e.g., Mouse movements, button and key presses 
•  Often consider interactions with basic interactors (e.g., 

button press, menu selection) to be at this level even 
though these may have more detailed syntax  

– Syntactic: what is current “state” of the 
system and what can happen next 
•  In modern systems often expressed by showing 

certain dialogs or disabling menus, etc. 
– Semantic: translation to meaning in the 

form or actions carried out for the user 
•  Note: good conceptual model, not 

necessarily good implementation model  
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Toolkits 

•  A library of components that can be 
manipulated by application programs. 

•  A component is a graphical object which can 
be manipulated by the user to input a certain 
type of value. 
–  Also called “widget”, “control”, “interactor” 
–  Menus, scroll bars, text entry fields, buttons, etc. 

•  Infrastructure for implementing and 
organizing components 
–  E.g., managing component trees, redraw, input 

distribution, etc. 
–  Sometimes called “intrinsics” 

•  Used directly only by programmers 
–  Only a procedural interface. 
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Toolkits (cont.) 

•  Interface to applications is most 
typically done with “callback 
procedures” 
– Application says: “when this happens” (e.g., 

this button pressed), “call this routine” 

•  Issues with callbacks: 
– Can be hundreds or thousands distributed 

around system 
• Modularization compromised 

– Hard to deal with undo, etc. 
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Toolkit Advantages 

• Consistent Look and Feel 
– Key insight of Macintosh toolbox 
– Path of least resistance was to be 

consistent 

• Structuring the task 
• Re-use of code 

– Just flat out a lot less work to use 
the toolkit library than to recreate 
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But... 

• Can be hard to use: 
– Very large libraries 

• Can end up as a complicated mess 
• Very large manuals 

– No help with when and how to 
call what 
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Higher Level Tools 

• Since toolkits are hard to use, 
higher-level support is helpful 
– Graphical layout tools 
– Higher-level frameworks 
– Older tools called “User Interface 

Management Systems” 

• Successful research ⇒ industry 
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Graphical / Interactive Tools 

• Create parts of UI by laying out 
components with a mouse 
– Examples: Menulay (1983), Trillium 

(1986), Jean-Marie Hullot from INRIA 
to NeXT 

– Now: “Interface Builders”, Visual Basic’s 
layout editor, resource editors, 
“constructors” 
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Graphical Interactive Tools 

• Significant Advantages 
– Graphical parts done in an 

appropriate, graphical way 
– Accessible to non-programmers 
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Component Architectures 

•  Create applications out of loosely coupled 
components which are separately developed 
and compiled 
–  In UI software, each component controls an area 

of the screen 
–  Example: drawing component handles picture 

inside a document 

•  Invented by Andrew research project at CMU 
(1988) 

•  Now: OLE, OpenDoc, Visual Basic Controls 
(VBX Controls), ActiveX, Java Beans 
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Higher Level Tools are Good 

• Use them if you can 
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But a bit of a warning: 

• Be aware of the path of least 
resistance 

• Tools have Whorfian effects  
– Change the way you think 
– Change what is possible 
 Change what you design 

Whorf-Sapir Hypothesis    
Benjamin Whorf  
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Questions about the lecture or 
readings? 



61 


