
Organization of
User Interface
Software

2

Administration

• Questions about assignments
due and assignments assigned

3

What we will talk about

• Ways to organize UI code

• Different “models” of user
interfaces as systems/programs
– How they are structured and the parts

that make them up
– Conceptually and in practice
– Separation of UI and rest of software

= “semantics”

4

Semantic

•  Functionality of system; what can be
expressed

•  What information is needed for each
operation on object

•  What errors can occur
•  Semantic vs. UI is key issue in UI tools
•  “Semantic Feedback”

– Depends on meaning of items
– Example: only appropriate items highlight

during drag

5

Conceptual

• Key application concepts that must
be understood by user

• User model
– objects and classes of objects
– Relationships among them
– Operations on them

• E.g. text editor
– Objects = characters, files, paragraphs
– Relationships = files contain paragraphs

contain characters
– Operations = insert, delete, etc.

6

The User Interface

• Typically want to think of “UI” as
only one component of an
overall system
– The part that “deals with the user”
– Distinct from the “functional

core” (AKA the “application”)

7

Separation of UI from “Appl”

• Really good reasons to want
separation of UI
(in general: “separation of concerns”)

– Modularity (good software design)
– Different expertise needed
– Don’t want to iterate the whole thing

8

Unfortunately this is typically
very hard to do in practice

• More and more of interactive
programs are tightly coupled to UI
(in some cases everything)
– Generally need to structure around

user concepts
– UI structure “sneaks into” application

9

Separation of concerns is a central
theme of UI organization

• A continual challenge
• A continual tension and tradeoff

10

UI tasks

• So far have:

• Clearly more structure
could be useful

UI Appl

11

UI tasks

• Basic parts of UI

Appl
Input

Output

Appl

Inter
UI

Core

12

UI tasks

• Basic flow

Appl
Input

Output

Appl

Inter

13

UI tasks

•  Basic flow

Note relation to : Norman’s 7 stages

Appl
Input

Output

Appl

Inter

14

UI tasks

•  Basic flow

Note relation to : Norman’s 7 stages

Appl
Input

Output

Appl

Inter

15

How do we connect these
disparate parts into working whole
• Tempting to organize system

modules around these boxes
– One module for input, one for

output, etc.
– Has been tried

(“Seeheim model” ~1983)
Didn’t work real well

16

Organizing UI as “3 big boxes”
doesn’t work well because...
• Modern (“direct manipulation”)

interfaces tend to be collections of
quasi-independent agents
– Each “object of interest” is separate

(but still needs the 3 parts)
– e.g. a button

• has “button-like” screen appearance
• acts on input in a “button-like” way
• etc.

17

Leads to object-based
organization In

Out
A

ppl

18

Object-oriented techniques

• Key features
– Separation of “objects of interest” into

encapsulated entities that implement
that “object”
• Store information about it

– It’s “state” (“properties” in Flex)

• Provide implementation of actions on
that data (“methods”)

– Combines data & action into one thing
instead of traditional approach of
data & procedures operating on it

19

Object-oriented techniques

•  Key features
– Abstract (& hide) the implementation

details
• Present “what” to outside world so that details

of “how” can be changed w/o breaking other
code

–  Classically no data access, only call methods

• Reduces complexity by limiting dependencies
• Example: Stack data structure

–  Just provide operations: push(), pop(), isEmpty()
–  Could be implemented with array or linked list
–  Can change implementation without breaking any code

that uses stacks!

20

Object-oriented techniques

• Key features
– Support reuse of code

• Can base new code (new classes) on
old code

– Objects defined by a class
• Represents of “type of thing”
• Provides definition of methods
appropriate to that type of thing

• Provides implementation

21

Object-oriented techniques

•  Key features
– Object created as an “instance” of the class

• Object gets own storage and uses methods
provided by class

– New classes can be created by
specialization of a class
(“inheritance”, “subclassing”)
• Selectively replace (“override”) implementation

of methods and other details “inherited” from
another class (“superclass”, “base class”)

• Substitutability: Object of subclass can be used
anywhere object of superclass is expected

22

Object-oriented techniques

• Became popular along with GUIs,
direct manipulation

• Buttons, sliders, icons, act like
separate entities ( objects)
– Have internal state, persistence
– React according to “what they are”

• OO was originally developed
(SmallTalk) and became popular (C
++) largely due to GUIs

23

Leads to object-based
organization In

Out
A

ppl

24

Leads to object-based
organization
• Each object implements

 each aspect
– In a way that reflects what it is

In

Out
A

ppl

25

Leads to object-based
organization

• Objects organized
hierarchically
– Normally reflecting spatial

containment relationships

 “Component trees”

In

Out

A
ppl

26

Component Trees

• Central concept for UI org
• Everything is done

through this tree
– Build an interface

== build a tree
– Change an interface

== change a tree

frame

column

button button

27

Challenge:
Separation of concerns

• Challenge is doing all this
different stuff in a single object
without creating a hopelessly
large and complicated beast

28

One organizational approach

•  Model-View-Controller (MVC)
– Smalltalk ~1980
– Idea: Separate out parts

• output / presentation (View)
• user input (Controller)
•  “semantics” / data (Model)

– Goals
• Different kinds of views and controllers for same

model
• Create (subclass?) a new model, then re-use

existing views and controllers
• Multiple views (and controllers) for one model

29

MVC

Model

View

Controller

30

MVC

Model

View

Controller

31

MVC

•  Model
– Can be simple as an integer for a counter,

or string for an text entry box
– Or as complex as a molecular simulator

•  View
– Everything graphical (output)
– Layout, subviews, composites

•  Controller
– Schedule interactions with other VCs

32

MVC interaction cycle

• User operates input device
• Controller notifies model to change
• Model broadcasts change

notifications to its dependent views
• Views schedules update of screen

– May query model to get all details

33

MVC issues

• Views and controllers tightly
coupled
– Rarely implemented separately in

practice

• What is in each part?
• Complexity when we have sub-

parts
– Sub-views, sub-controllers, sub-

models

34

Exercise: MVC partitioning

• File picker

• MP3 Player

• Text editor

35

What do we have to help us
implement UI systems?

• Layered set of tools…

(A different way to slice concepts)

36

Layers of UI Software

Application Program
“High-Level” Tools

Toolkit
Window System

OS
Hardware

Tools
Supporting
Each Layer

37

Layers of UI Software as They Tend to
Occur in Commercial Systems…

Application Program
“High-Level” Tools

Toolkit
Window System

OS
Hardware

Tools
Supporting
Each Layer OS

38

Layers of UI Software

Application Program
“High-Level” Tools

Toolkit
Window System

OS
Hardware

Tools
Supporting
Each Layer

39

Layers of UI Software

Application Program
“High-Level” Tools

Toolkit
Window System

OS
Hardware

Tools
Supporting
Each Layer

Primary focus of
this class

Embodies
organization

Use these if you can!
(Built on TK layer)

40

Quick Look at the tools
landscape
• Today’s tools are highly

successful
– Window Managers, Toolkits,

Interface Builders are ubiquitous
– Most software built using them
– Are based on many years of HCI

research

41

Window Systems

•  Provides a virtual device abstraction
– Each program can act as if it has a

complete control over screen & input
– Window system manages and controls

multiple contexts, logically separated,
but implemented together
• Analogous to OS management of CPU and

memory

42

Window Managers (History)

•  Multiple (tiled) windows in research
systems of 1960’s: NLS, etc.

•  Overlapping in Alan Kay’s thesis (1969)
•  Smalltalk (1974) at Xerox PARC
•  Successful because multiple windows

help users manage scarce resources:
– Screen space and input devices
– Attention of users
– Affordances for reminding and finding

other work

43

Windows, components

•  “Window System”
– Programming interface
– Output graphics operations to draw

clipped to a window
– Input from mouse and keyboard to

appropriate window
•  “Window Manager”

– User interface to windows themselves
– Decorations on windows
– Mouse and keyboard commands to control

windows.

44

Windows, cont.

•  Many systems combine Window System
and Window Manager
– SunTools, Macintosh, MS Windows, NeXT

•  Others allow different WM on same WS
– X, NeWS
– Allows diversity and user preference

•  Also different WS on same hardware
– SunTools, X, NeWS on Unix machines

45

Window System: Output Model

• Graphics commands that the
programs can use

• All must go through window
system so they are always clipped
– Usually can only draw with what the

window system provides

46

Window System: Output Model

•  Oldest systems (SunTools, etc.) simple
primitives

•  Later (Macintosh, X Windows) more
sophisticated
– Filled polygons, splines, colors, clipping
– Still, all 2-D objects
– Extensions for 3D

•  Newer systems (e.g., Java Swing) have
quite sophisticated output model
– Fully scalable, transparency, …

47

Window System: Input Model

• How input from user is handled.
• Most only support keyboard and

mouse
• All modern WS use similar model:

– Events generated and passed to
applications
• “Event records” containing significant

details of a user input action
– type of input, x,y of mouse, time, etc.

• Processed asynchronously (queued)

48

A model for input handling
Semantic-Syntactic-Lexical levels
• Comes from analogy to

programming languages
– Lexical:

 characters form symbols
(keywords, operators, comments, etc.)

– Syntactic:
 symbols organized by a grammar
(into constructs: procedures etc.)

– Semantic:
 meaning derived from constructs
(so code can be generator or lang. interpreted)

49

A model for input handling
Semantic-Syntactic-Lexical levels
•  For UI

– Lexical: the basic inputs
•  Events: e.g., Mouse movements, button and key presses
•  Often consider interactions with basic interactors (e.g.,

button press, menu selection) to be at this level even
though these may have more detailed syntax

– Syntactic: what is current “state” of the
system and what can happen next
•  In modern systems often expressed by showing

certain dialogs or disabling menus, etc.
– Semantic: translation to meaning in the

form or actions carried out for the user
•  Note: good conceptual model, not

necessarily good implementation model

50

Toolkits

•  A library of components that can be
manipulated by application programs.

•  A component is a graphical object which can
be manipulated by the user to input a certain
type of value.
–  Also called “widget”, “control”, “interactor”
–  Menus, scroll bars, text entry fields, buttons, etc.

•  Infrastructure for implementing and
organizing components
–  E.g., managing component trees, redraw, input

distribution, etc.
–  Sometimes called “intrinsics”

•  Used directly only by programmers
–  Only a procedural interface.

51

Toolkits (cont.)

•  Interface to applications is most
typically done with “callback
procedures”
– Application says: “when this happens” (e.g.,

this button pressed), “call this routine”

•  Issues with callbacks:
– Can be hundreds or thousands distributed

around system
• Modularization compromised

– Hard to deal with undo, etc.

52

Toolkit Advantages

• Consistent Look and Feel
– Key insight of Macintosh toolbox
– Path of least resistance was to be

consistent

• Structuring the task
• Re-use of code

– Just flat out a lot less work to use
the toolkit library than to recreate

53

But...

• Can be hard to use:
– Very large libraries

• Can end up as a complicated mess
• Very large manuals

– No help with when and how to
call what

54

Higher Level Tools

• Since toolkits are hard to use,
higher-level support is helpful
– Graphical layout tools
– Higher-level frameworks
– Older tools called “User Interface

Management Systems”

• Successful research ⇒ industry

55

Graphical / Interactive Tools

• Create parts of UI by laying out
components with a mouse
– Examples: Menulay (1983), Trillium

(1986), Jean-Marie Hullot from INRIA
to NeXT

– Now: “Interface Builders”, Visual Basic’s
layout editor, resource editors,
“constructors”

56

Graphical Interactive Tools

• Significant Advantages
– Graphical parts done in an

appropriate, graphical way
– Accessible to non-programmers

57

Component Architectures

•  Create applications out of loosely coupled
components which are separately developed
and compiled
–  In UI software, each component controls an area

of the screen
–  Example: drawing component handles picture

inside a document

•  Invented by Andrew research project at CMU
(1988)

•  Now: OLE, OpenDoc, Visual Basic Controls
(VBX Controls), ActiveX, Java Beans

58

Higher Level Tools are Good

• Use them if you can

59

But a bit of a warning:

• Be aware of the path of least
resistance

• Tools have Whorfian effects
– Change the way you think
– Change what is possible
 Change what you design

Whorf-Sapir Hypothesis
Benjamin Whorf

60

Questions about the lecture or
readings?

61

