
Usability Engineering
Process

Administration

• Questions about Assignment #0
• Questions about Assignment #1

• Well done to those who already
submitted assignments. Don’t
wait for the deadline!

Usability needs to be a process

•  “Usability is not a quality that can
be spread out to cover a poor
design like a thick layer of peanut
butter.” [Nielsen]
• Like Software Engineering, it is a

process for developing software
that helps insure high quality
• Must plan for and support usability

considerations throughout
development

“Usability Engineering”

• Parallel to “software engineering”
• Make the application of usability

methods
more like engineering
– Measurable
– Process oriented
– Not just “art”

Development process

• Software engineering has
developed quite a bit of process for
software development

• Bad news is that a lot of it does not
work well for UI software
– Traditional SE approaches are a

flaming disaster
– But need to understand the

vocabulary and mindset

 vs.

Traditional SE process

The “waterfall” model
– Not typically advocated anymore, but

terminology and biases remain

Requirements specification
 Design
 Coding
 Integration and testing
 Operation and maintenance

Waterfall model

• Called “waterfall” model because
when you finish one phase you are
not supposed to go back “up
stream”

Requirements specification
 Design
 Coding
 Integration and testing
 Operation and maintenance

Waterfall model

•  Implies that you design once
(and get it right)
– Not really possible for UI software

• Obsolete, but many of the parts
remain in almost any SW process
– Biases from this traditional approach

remain
– Also beware that terminology like

“testing” doesn’t necessarily match
what we typically mean in HCI

Steps in an iterative process
(not fully in sequence)

1.  Study the user and their tasks
2.  Study the competition
3.  Set usability goals
4.  Participatory design
5.  Coordination of the total interface for consistency

 Including documentation, help, etc.
6.  Guidelines and heuristic evaluation
7.  Make prototypes of the system early and quickly

 Actually faster to prototype first
8.  Empirical testing
9.  Iterative design
10.  Collect feedback from field use

Requirement specification

• What will the system do?
– What does it need to do meet the

customer’s (user’s) needs?
– What does the customer (user)

want?

• Encode in a spec that drives the
next phases

Requirement specification

• Requirement specification quite
hard in practice
– Users can’t tell you what they

need, etc.
• Writing down a requirements

spec is not very realistic for UI
design
– But, doesn’t mean you shouldn’t

find out about user needs

1. Know the user

•  Study the intended user and the use of the product
–  Best if developers go and interview them personally

(nothing like personal understanding intuition)
–  But can be difficult because
•  May want to hide the developers
•  Developers may not have skills for dealing with users
•  Reluctance of sales people, etc.
•  Reluctance of users

•  User Characteristics
–  Work experience, education level, age, previous computer

experience, …
–  Time for learning, training
–  Available hardware (monitor size, acceptance of plug-ins,

platforms
–  Social context of use

Early focus on users & tasks

From Gould & Lewis article
– Note: this is quite old at this point, but

still relevant

• Not just “identifying”, “describing”,
“stereotyping” users
– Direct contact through interviews &

discussions
– We teach contextual inquiry as

method for this

Task analysis

What tasks will the users really do?
 Extremely important
•  Involve the users in this
•  Important to include exceptions and

error conditions
•  Many different kinds and variations on

task analysis
– Nielsen’s
– “Hierarchical task analysis”
– Contextual inquiry
– Choose method based on setting & goals

User-centered task analysis

• Based on what the user will do
– Not what the system will do

• High-level
• What, not how
– Nothing about how to accomplish

at user level (no discussion of
web pages, buttons, filling in
fields,…)

Components of task analysis

• Goals
– What is this task supposed to

accomplish (again: what, not how)
•  Information needs
– What does the user need to know or

view to do this task?
– Including what needs to be visible to

the user (on the screen)
• What the system needs to show, and
• What the user needs to know

Task analysis: scenarios

•  Scenarios (stories) of typical uses:
– Related to software engineering “use

cases”
– Specific example of how user might use

system
– One scenario for each major class of user

doing each kind of important task
• Tasks you want to make efficient & easy
• What is important to optimize?

– Will significantly affect design
– Try to include lots of exceptional cases
– Shows how interface will be used

Uses for task analysis

• Drive refinement of interface
• Communication of concepts
–  To management, marketing,

rest of dev. team, and customers

• Can potentially replace much
textual specification

Results of task analysis

•  Scenarios to be used during design
•  List of thing users want to accomplish

(goals)
•  Information they will need to

accomplish those goals
•  Communication needs of users with

other people
•  Steps to be performed and

interdependencies
•  Criteria to determine quality of results

2. Competitive analysis

Goal: “Know the competition”
• For usability and function
• Read trade-press reviews
• Visit competitor’s web sites

 Determine importance of
various features and issues

3. Setting Usability Goals

• What does it mean to be
“easy to use”?
• Some possible definitions:
– “I like it”
– “I always do it that way”
– “That is the way system X does it”
– “It’s easy to implement”

Much better goals:

– “Can be learned in less than two minutes”
– “User will perform N error-free tasks per

session”
– “Error rate will be lower than 2 per 10

operations”
– “Tasks will be performed in 30% of the

time it takes using competitor’s system”
– “Users will have a high satisfaction with

system (as measured by a survey)”
•  Explicit, specific, measurable metrics
•  Allows objective decision making

Goals (cont.)

• Tradeoffs, so have to pick most
relevant metrics
• Some measures:
– Learnability: time to learn how to do

specific tasks (at specific proficiency)
– Efficiency: (for expert) time to

execute benchmark tasks.
– Errors: rate per task, time spent on

errors, error severity
– Subjective satisfaction:

typically via questionnaire

Goal levels

• Multiple levels to consider for
your system
– Minimum acceptable level
– Desired (planned) level
– Theoretical best level

– Also take note of current level
and/or competitor’s level

Financial impact analysis

•  Prove it
•  Demonstrate the importance of usability

•  # users * salary per hour * # hours on system
= cost of system
•  Use to estimate savings

(also reduced training, error time, need for
support staff, etc.)

 Tells how much time to spend on usability

Note: whole book on this subject:
–  Randolph Bias and Deborah Mayhew, “Cost-

Justifying Usability”, Academic Press, Boston,
1994.

4. Participatory design

• Users involved during the
design process through regular
meetings
– Not just at the beginning

e.g., during contextual inquiry
– Users are good at reacting to

concrete designs and prototypes
– But users are not necessarily good

designers

Design
(from traditional SE process)
• Several types
– Architectural design
• High level decomposition
• What are the big pieces, how do
they fit together to make system

– Detailed design
• The littler boxes that go in
the big boxes

Design
(from traditional SE process)
• UI design would be detailed design

+ requirements (but iterated)
• But UI design doesn’t fit well
– Traditional SE design is mostly about

the system structure
– UI design is mostly about what the

user sees
• Often without regard to system structure

that makes it happen

Coding and unit testing

• Actually write the code
– Typically the only part you get graded

on in university
– Only part you can’t skimp on

• Test small scale parts (units) to
ensure they function right
– Extremely important

(and under appreciated) in practice

5. Consistency

• Most important characteristic of
UI
• Requires oversight
– Not each dept./developer creating

own section

• May require overall design
document, vocabulary guide,
style guide, templates, etc.

6. Use of guidelines and
Heuristic Analysis

Designers evaluating the UI
– Based on their experience

(Future homework on this topic)

7. Build prototypes

•  Simulation of (important aspects of) the
interface
•  Quick and cheap to create (e.g., no “back

end”)
•  Can be “low fidelity”
–  E.g., Paper prototypes
•  Can be roughly drawn
•  Actually better if not refined
•  Focus on addressing important questions about tasks (not

surface issues, e.g., colors, exact layout, icon design, etc.)
–  Can use in studies
•  Experimenter can “play the computer”
•  Useful and revealing

Next lecture considers this topic in detail

8. Empirical testing

• Critical to usable products
• Designers must watch users
– Not just e.g., web logs

• Not necessarily difficult or
expensive
– Often a few user tests get you most

information
(get the “high order bits” quickly)
– Don’t necessarily need a fancy lab

9. Iterative design

•  Redesign based on evaluation
•  Note: New design may be worse or break

something
–  be prepared for that, often need to “back out” of

recent change
•  Keep track of reasons for design decisions
–  “Design rationale”
–  So you don’t need to keep revisiting the same

decisions
–  When future conditions suggest changing a

decision, use this to remember why you made it
that way and what implications of change are

9. Iterative design

•  Instead of arguing about a design feature,
figure out what information would tell you
which way to go

Iterative design

From Gould & Lewis article
• Empirical testing with intention

to fix the problems
• Not just goals (“be easy to use”)

but a process to achieve the
goals

Integration and testing
(in traditional SE process)

Typically don’t build things in
university big enough to hit this

• Testing that when you put the
pieces together, they work
– Even if “units” work perfectly,

whole may not

Types of testing

• System testing
– Do you think it works

• Verification
– Does it match the spec

• Validation & acceptance testing
– Does it work to the customer
– Does it meet the contract / spec

Testing

• Notice that all that testing is
about testing the system
• “User tests” are not really there
– This testing typically aimed at

uncovering mistakes in
implementation
– When you user test you find out

the requirements and/or design
were wrong

Operation and maintenance

• What happens after it’s
delivered
– The next release
– Bug fixes
– New features

Waterfall model
does not work for UI software
• UI requirements and design are

very hard
– Too hard to get right on the first try
– Human beings are just too complex
• Just don’t know enough to do it from first

principles

– Hidden aspects contributing to mental
models

• Must iterate the design

10. Measure real use

• Follow-up after release
– For the next version

• From bug reports, trainers,
initial experiences, …
• From web logs, reports,

customer support, …

User-centered iterative approach
has been around for a long time

• Catching on, but practices still
don’t get followed as much as
they should
– Increasing, but not there yet

• Why?

Obstacles to user-centered
iterative design
• Big reason: Impractical
– Iteration is expensive
– Can barely afford to build it once
• Even with high levels of resources

– Dealing with this is one of the things
this class is about

 Good prototyping practice helps a lot

Obstacles to user-centered
iterative design
• Competing approaches
– The power of reason and

“getting it right the first time”
– CS typically teaches that you can

(and should!) get your design
right the first time

Obstacles to user-centered
iterative design
• Value of interaction with users

is misestimated
– User diversity is underestimated
• “I understand the users”
– User diversity is overestimated
• “I’ll never understand them all”
• “Can’t get statistically sound info”
– Believe that users don’t know

what they want (true, but…)

Obstacles to user-centered
iterative design
• Difficult to manage, measure,

and set goals
– When will the UI software be

done?
• Very hard to estimate software
development times anyway
• Open-ended iteration makes it even
harder

Chicken and egg problem

• Can’t afford to build it more
than once
• Can’t get it right the first time
– Must test and redesign, but can’t

do that without building

• How do we get past this?

Chicken and egg problem

• How do we get past this?

• Build something less than the
full system and iterate on that

 Prototyping… next lecture

Warnings about iterative design

• Big picture first
– It’s easy to get bogged down in

details and miss the forest for the
trees
• E.g., layout, color, etc.

– Get the “high order bits” first
• “Is this the right functionality to support

the user’s tasks?”
• “Is this conceptual model going to work

for the user?”

Warnings about iterative design

• Beware of delivering (what was
supposed to be) the prototype
– A lot of pressure to deliver the first

thing that looks like it works
• Can get you in big trouble later
• Need to make sure everyone knows this

is a prototype

– May look a lot closer to done than it is
• Often want to make things look “sketchy”

early on to avoid this

Warnings about iterative design

Design inertia
– First designs have a huge impact
• Evolutionary process & like biological

evolution can be hard to back out of
decisions

– Need to be willing to make radical
changes when maturity of design is
low
• Needs to be low cost early to allow this
• Explicitly consider several designs

Warnings about iterative design

• Need to understand the reasons
behind usability problems
– When “feature X” causes usability

problems the simple thing is to
eliminate X
• But if we don’t understand it, we
may make same mistake again and/
or make things worse

Questions?

