
User Interface Prototyping: Tools and Techniques 1

Pedro Szekely

User Interface Prototyping:
Tools and Techniques

Pedro Szekely

USC/Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292
Phone: (310) 822-1511, FAX: (310) 823-6714

szekely@isi.edu

INTRODUCTION
Prototyping is an important technique to reduce the cost and risk involved in developing complex
software systems [Rudd 94]. It essentially involves building a small scale version of a complex
system in order to acquire critical knowledge required to build the system. Even though
prototyping involves building only a small scale version of a system, significant costs and risks
are still involved. The prototyping process takes time, involves many people, and if incorrect or
incomplete knowledge is gathered it can lead project managers, system builders and end-users to
make false assumptions about important characteristics of a system, setting up the stage for a
project failure.

In this paper we survey different tools and techniques for prototyping user interfaces, ranging
from paper and pencil to draw mockups of displays to sophisticated interface construction
toolkits. We view prototyping as an information gathering process, so we will compare the tools
and techniques according to two criteria. The first criterion is a measure of the completeness and
variety of the information that a tool or technique can help acquire, given that several different
kinds of information are needed to design and build a good user interface. The second criterion
is the ability of the tools to expedite the information gathering process in order to minimize the
cost of the prototyping process and to maximize its effectiveness.

The paper is organized as follows. In the next section we discuss why prototyping is important in
user interface development. Then we categorize the different kinds of information that need to
be collected during the prototyping process, and describe a set of requirements that prototyping
tools and techniques must satisfy to make interface prototyping effective. The body of the paper
compares different kinds of prototyping tools and techniques according to the two criteria
mentioned above. We close with a summary and an agenda of research issues.

PROTOTYPING USER INTERFACE SOFTWARE IS IMPORTANT
The conventional wisdom today is that the only way to build good user interfaces is by iterative
refinement [Buxton 80]: build an initial version of the interface, and then test it with users and
revise it as many times as you have money and time for [Gould 85, Swartout 82]. In a recent
study of 74 software development projects in industry and academia [Myers 92a], 87% of
interviewed developers reported using iterative design. In addition, some of the best examples of
interactive software today were developed using iterative design: the Xerox Star [Bewely 83], the
Apple Lisa and Macintosh [Morgan 83] and the Olympic Messaging system [Boies 85].

Prototyping is an invaluable technique for iterative design because iterative design involves
making many revisions to the implementation of a design, and, as we argue below, building and
revising the actual software system is difficult and expensive.

User Interface Prototyping: Tools and Techniques 2

Pedro Szekely

High quality interface software is complex. It has to work in real time, it must respond
appropriately to all possible inputs, it must allow users to undo and interrupt operations, and
often it must be multiprocessed so that the system will respond to users even while performing a
long computation. Since interface software is complex, it is not surprising that the amount of
software devoted to user interface in modern interactive systems is large. The study mentioned
above also reported that on average over 50% of code for a wide set of applications is devoted to
user interface. Many developers also report [Rosson 87] that they find it very hard to
modularize the user interface software from the rest of the system, finding it harder to revise the
software when needed.

Prototypes of interface software can ignore many of the requirements mentioned above, making
the software simpler and smaller, and thus cheaper to develop and revise. For these reasons,
prototypes can expedite the iterative refinement cycle required to build good user interfaces.

PRODUCTS OF THE PROTOTYPING PROCESS
The main purpose of a prototype is to allow developers to acquire the information needed to
successfully build a system. We first review the kinds of information needed to develop a
successful interface, and then we will compare prototyping tools and techniques in terms of their
ability to maximize the effectiveness and minimize the cost of acquiring the information.

To build a successful interface developers need to acquire several kinds of information about the
system to be built. The information ranges from an analysis of the tasks that users are expected
to perform with the system, to detailed descriptions of the look and feel of the system. The
required information falls into the following categories.

Task specification: specification of the tasks that users are expected to accomplish using the
system. The task specification is needed in order for developers to understand what services to
provide in a system and how to deliver them to the end-users in order to help them perform their
tasks more effectively. Prototypes help developers better understand the tasks that users need to
perform by letting developers see users in action with the system, and get feedback about the
effectiveness of a system. In addition, successful systems often change the nature of the tasks
that users perform, enabling them to do tasks they could not accomplish before. Prototypes let
developers see how a system might change the tasks that users perform, and allow them to design
a better system.

System functionality : specification of the functional requirements of a system. This information
specifies the requirements of the software modules that the interface software calls upon to fetch
data display, and to modify data in respone to user requests. Different interface designs often
impose different requirements on system functionality. Tools that can build interface prototypes
without requiring that the system functionality be built are especially useful. They allow interface
designers to explore design alternatives without having to wait for programmers to revise the
system functionality in order to test the prototypes.

Interface functionality: a specification of the system information and state that needs to be
presented, and the commands to be made available to users. This specification captures the
"content" of the interface, abstracting away from "style" details such as font, color, etc. It is
important for developers to understand the interface at this abstract level. For example, before
worrying about style issues of a display, developers should understand whether the display
presents the right amount of data at the right time to help users perform their tasks.

Screen layouts and behavior: specification of how the interface looks and behaves. This
information is of primary importance because it defines what users can see and do. Prototyping is
very useful to acquire this information because look and feel issues are a source of endless

User Interface Prototyping: Tools and Techniques 3

Pedro Szekely

discussions between members of a design team, and there is a wide space of possibilities that
need to be explored.

Design rationale: a specification of the reasons why the different design choices were made. This
information is useful for many reasons. It can be used to achieve consistency in the interface, to
guide extensions to the interface of a previous version of the system, to review and justify
designs with management, etc. In addition, since prototypes often implement only a subset of
the system functionality, the design rationale is useful in extrapolating from the prototype to the
full system.

User feedback : a log of feedback about an interface collected from a variety of sources such as
end-users, management and design reviews. Feedback can take several forms: comments user
express while interacting with a prototype, answers to questionnaires, video segments, and
complete interaction histories. Collecting and managing feedback is an important and difficult
task. Prototyping tools should provide facilities to collect and manage such feedback so it can be
retrieved when needed.

Response times: a specification of the required system response times in different situations.
Prototypes let developers see the users in action and understand the required response times for
effective system usage.

Reusable code: a by-product of building a prototype can be reusable code that can be used in the
implementation of the real system. Building a prototype can be expensive, and the cost is harder
to justify when the prototype's implementation cannot be reused in the implementation of the real
system.

None of the currently available prototyping tools and techniques can deliver all the kinds of
information mentioned above. In addition, the ability to capture the relevant information is not
the only criteria for evaluating prototyping tools and techniques: there are other requirements.

REQUIREMENTS FOR PROTOTYPING TOOLS
Prototyping tools and techniques differ substantially in the support they provide for acquiring the
various kinds of information described in the previous section. In this section we describe a set of
requirements for prototyping tools in order to make the process of gathering such information
effective and cheap.

Ease of use . Interface development is a team effort involving end-users, system analysts,
programmers, interface designers, graphic artists, etc. Prototyping tools should allow all
members to participate in the development and refinement of the prototype. Steep learning
curves are unacceptable because many of the potential contributors to the prototyping process do
not have the time to learn the tools. In addition, difficulty of use slows down the iteration cycle
necessary to develop good user interfaces.

Fast turn-around . Interface prototyping involves making many small refinements to the
interface. Tools should allow developers to quickly make the changes and immediately see the
interface in action again.

Extensive control over prototype features . Prototyping tools should be very flexible. One of the
purposes of prototyping tools is to try out new ideas, so prototyping tools should support a large
variety of interface designs, and should give developers extensive control over design details.

Data collection capabilities. Ideally, prototyping tools should capture all the different kinds of
information mentioned in the previous section.

User Interface Prototyping: Tools and Techniques 4

Pedro Szekely

Executable prototypes . Prototypes should be as faithful to real systems as developers need to
make them in order to increase the reliability of the information collected. An executable
prototype is one that can respond to user input and provide appropriate responses. However, it is
not always necessary that prototypes be connected to real data and that they perform real
computations; simulated data is appropriate in many situations.

Lifecycle support . Prototyping tools should help with all phases of development starting with
early conceptual design through detailed screen and behavior design. In addition, prototyping can
be relevant after system deployment in order to do redesing and to try out enhancements.

Team design . Software products are developed by teams. Prototyping tools should support
groups of people working together either simultaneously or asynchronously, and perhaps
remotely.

Version control. An important aspect of prototyping is to explore and evaluate alternative
designs. Many versions of a prototype might be built while exploring different alternatives.
Developers might want to revisit previous designs, so keeping and managing prototype versions
is important. In addition, user feedback about a prototype should be tied to the version on which
it was collected to facilitate exploring designs to address issues raised during user testing.

PROTOTYPING TOOLS AND TECHNIQUES
The essence of user interface prototyping is to construct a small scale version of an interactive
system to collect information to guide its construction. Interface prototypes can be built with a
large variety of tools, ranging from paper and pencil to draw mockups of displays to
sophisticated interface construction toolkits. In this section we describe different categories of
tools that can be used to prototype interfaces, highlighting their special strengths and
weaknesses. We compare the tools with respect to their ability to deliver the different kinds of
information needed to build good user interfaces, and with respect to the requirements outlined in
the previous section.

Paper and Pencil
Paper and pencil are perhaps the most popular tools one uses to describe interface designs to
others. Under this category we also include electronic versions of these tools such as drawing,
painting and text editors.

Paper and pencil are prototyping tools with many strengths. They are easy to use: most people
can draw boxes with buttons, menus and scribbles representing the objects in an application
domain. Paper and pencil allows extensive control over details of the design. Control is not
even limited by our ability to draw, because we can always draw a scribble and tell others what it
means. Paper and pencil also encourage team design because many people can draw at the same
time, especially when drawing on blackbords and large sheets of paper. Paper and pencil are also
very useful for capturing different kinds of information, because whatever is not captured in the
drawings can easily be expressed with textual annotations.

The main weaknesses of the paper and pencil technique is that it is very awkward to capture
behavior and that the interface prototypes are not executable. Behavior is often captured using
two drawings showing the interface before and after an action, together with an annotation of
what the action is (e.g. clicking the mouse). Not only are such descriptions unwieldy, but since
they are not executable, they capture only the "look" of the interface, but not its "feel".

Despite their weaknesses, paper and pencil, or their electronic versions, are invaluable
complements to all the other prototyping tools because they complement their weaknesses (see
Tables 1 and 2 in the summary section at the end of the paper).

User Interface Prototyping: Tools and Techniques 5

Pedro Szekely

Facade Tools
Facade tools are essentially drawing editors with an ability to specify input behavior. We call
them facade tools because they allow developers to construct screens that look and behave like
the screens of the real application, except that there is no "application" behind them. The screens
display canned data, and the behaviors either switch to another canned screen, or update the
screen with a new set of canned data.

Tools in this category differ mostly in the quality of the drawings (e.g. 3D shapes), and the
sophistication of the input behaviors that can be specified. Examples of facade tools are Astound
[Astound 93], Hypercard [Hypercard 92] and MacroMind Director [MacroMind 90]. These three
tools, and other similar tools, were not designed as user interface prototyping tools. They have
their own domain of applicability, and they are reputed to be widely popular and extremely
effective tools in their domain. Here we analyze them as tools for prototyping interfaces, because
they are often used as such.

Astound is a presentation preparation package. It allows users to produce a sequence of slides
containing both text and graphics. Users can also add to a slide buttons with associated
behaviors such as jumping to another slide, or making elements of the slide appear and
disappear. Astound provides sophisticated animation capabilities to dramatize the transitions
between slides.

Astound can be used as an interface prototyping tool. Developers can draw the displays of an
application and use the buttons to show the sequence of displays that users will need to traverse
to accomplish different tasks.

Hypercard is a tool to build hypertext applications. Hypercard applications are built with two
kinds of abstractions, cards and stacks of cards. Cards can contain a variety of fields and pictures.
The fields can be type-in areas, buttons, menus and other WIMP interface building blocks (i.e.,
interfaces consisting of Windows, Icons, Menus and Pointing). Hypercard has three modes of
operation: end-user, simple authoring and application developer. The end-user mode allows the
user to interact with the Hypercard application, but not to extend it in any way. The simple
authoring mode allows the user to insert links between cards, change layouts and edit scripts.
The application developer mode gives developers full access to all Hypercard capabilities,
including the ability to define new cards and new fields, and to define and modify scripts.

Hypercard's simple authoring and developer modes provide excellent facilities for prototyping
interfaces. The simple authoring mode allows all members of the design team to be involved in
screen design and simple behavior definition. Developers with programming skills can
additionally use the developer mode to write scripts to implement complex behaviors to produce
highly functional prototypes. End-user mode allows users and developers to test the interface.

User Interface Prototyping: Tools and Techniques 6

Pedro Szekely

(a) (b)

Figure 1. Initially, creating detailed graphics (a) may distract the team from fundamental
questions, and cause them to dwell on details, such as the lighting model applied. (b) allows
designers to address higher level issues, such as the action pressing this button will cause1.

Figure 2. The sequence shows (albeit in static form) how a user might interact with a proposed
system. The user drags a movie (box with the 'M' in it) to a group of diverse documents, while
controlling the resolution of the movie by zooming it up or down. The rough sketch avoids details,
and allows designers to focus on issues such as : Will users want this capability? Is this a
collection a group? How should the user specify moving an individual item versus the whole
group? What does it mean to zoom a movie up and down? Should the movie play as it is moved
or zoomed? etc1.

MacroMind Director is a sophisticated multimedia authoring tool. It supports 3D graphics, large
libraries of animation effects, and a sophisticated scripting language. MacroMind Director is
especially useful for prototyping interface with a large graphical component, unlike Hypercard
which is useful mainly for WIMP interfaces. Figures 1. and 2. illustrate the power of
MacroMind Director for prototyping interfaces at the interface functionality level rather than at
the look and feel level.

Facade tools retain most of the benefits of paper and pencil, while adding the ability to describe
behavior and to execute the prototypes. Many facade tools can give end-users the illusion of
interacting with the real application, so they can be used to get very reliable feedback from end-
users.

The main weakness of facade tools appears to be that they do not produce reusable code that can
be used to build the real application, so the implementation effort in building the prototype is
lost. Additionally, since the prototyping and the implementation tools are so different, the
prototype and the application might be built by different teams of people, and many of the
lessons learned while building the prototype remain in the minds of the prototyping team, and do
not carry over effectively to the implementation of the system.

1Figure taken from Yin Yin Wong's paper "Rough and Ready Prototypes: Lessons from Graphic Design" in CHI'92,
Posters and Short Talks. May, 1992.

User Interface Prototyping: Tools and Techniques 7

Pedro Szekely

On the other hand, as Brooks [Brooks 79] argues, developers should always plan on throwing
away the first implementation of a system, which means that the main use of the first
implementation of a system is to learn how to build the system correctly the second time. Facade
tools could be viewed as a way of acquiring all the relevant knowledge without having to
actually implement the system, so the amount of work thrown away is smaller. Unfortunately,
there is not enough evidence in the literature to decide whether the lack of reusable code is really
a serious shortcoming.

A potential problem of facade tools is that they can over-sell the capabilities of an application
giving the illusion that a more sophisticated application will be constructed than what is feasible
given budget, time and technology constraints.

Interface Builders
Interface builders, unlike facade tools, are interface construction tools rather than interface
prototyping tools. Their main strength is that, like facade tools, they give interface developers a
drawing-like interface to specify the interface, but, unlike facade tools, generate executable code
that can be linked in into an application to produce an industrial strength implementation. While
facade tools provide a special scripting language to specify behavior, interface builders use a
general purpose programming language such as C or C++ to specify behavior, the same language
that is often used to implement the application functionality.

There are dozens of interface builder tools in the market such as the NeXT Interface Builder for
NeXT Step [NeXT 91], Prototyper for the Macintosh [SmethersBarnes 90] , WindowsMAKER
for Microsoft Windows [BlueSky 91] and UIMX for X Windows and Motif [VisualEdge 90]. A
recent study by Myers [Myers 92a] revealed that interface builders are widely used and are
reported to greatly facilitate the interface construction process.

Interface builders are often marketed as prototyping tools because they satisfy many of the
requirements of prototyping tools that were mentioned above. They are easy to use because they
provide a drawing-style interface for building displays. They provide fast turnaround to changes
because of their drawing-like interface and their ability to quickly switch between "build" mode
where developers specify the elements of displays and "run" mode where developers can test the
interface as if they were end-users. They provide extensive control over interface designs
because developers can easily change all the properties of the elements of a display such as
layout, fonts, colors, etc., and, of course, the prototypes are executable.

Interface builders have three major shortcomings when used as prototyping tools. First, they can
only be used to construct the static portions of an interface such as the menus and dialogue boxes
that control the application. Interface builders cannot be used to specify the "main windows" of
applications, which display application-specific information in graphical ways (e.g., shapes in a
drawing editor, circuit elements in a schemaitcs editor, notes in a music editor), and that allow
users to directly manipulate the information. Interface builders only allow developers to reserve
an area where this information will be displayed, but its contents must be programmed using the
primitives of the underlying toolkit and window system. The need to program the interface to the
main application window makes interface builders break down as prototyping tools. Ease of use
is lost because only expert programmers rather than graphics artists, interface experts, domain
experts and end-users have the sophisticated programming skills required to build these
windows. Fast turn around to design changes is lost because programming is a slow process.

The second major shortcoming of interface builders is that it is difficult to isolate the interface
from the rest of the application. Interface builders require programmers to write a large number
of procedures that are automatically called when the interface elements are activated by end-
users (there procedures are called call-backs). Changing the interface requires rewriting callback
procedures in order to keep the interface executable, eliminating ease of use and fast turn around.

User Interface Prototyping: Tools and Techniques 8

Pedro Szekely

In addition, interface builders provide little support for simulating portions of an application that
have not yet been implemented. Programmers must write call-back procedures that insert the
simulated information into the appropriate interface elements.

The third shortcoming of interface builders is that they require developers to select concrete
building blocks to specify interfaces (sliders, buttons, etc.) forcing them to commit to specific
interface features before they are ready to do so. For example, consider a designer who wants to
specify that a microwave oven interface should have a feature to select the cooking temperature.
An interface builder forces the designer to specify exactly how the temperature will be selected
(e.g., slider, numeric pad, menu) even though the designer is not ready to choose a specific
technique. This makes interface builders useful for producing screen layouts and behavior, but
not for producing information about interface functionality, which as was mentioned before, is
critical for designing good interfaces.

Model-Based Tools
Model-based interface development is a new paradigm for developing interfaces [Foley 91,
Puerta 93, Szekely 92, Wiecha 90]. The model-based paradigm uses a central database to store a
description of all aspects of an interface design (Figure 4). This central description is called a
model, and typically contains information about the tasks that users are expected to perform
using the application, the data of the application, the commands that users can perform, the
presentation and behavior of the interface, and the characteristics of users.

Help
generator

Alternatives
generator

Visualizer
Editor

Critic

Design-Time
ToolsModel

Behavior
Presentation

Command
Data

Task
User

Application
State

Runtime
System

User
Interface

Figure 4 . Architecture of model-based interface development tools.

A standard software module called an interface generator , or runtime system uses the model as
input, and maps the state of the application into the windows that appear on a user's screen. The
runtime system also accepts inputs from the user and invokes the appropriate commands.

Interfaces are developed by using specialized design-time tools to build and refine models.
Developers specify what features the interface should have, rather than write programs that
specify how to make the computer exhibit the desired behavior.

The main advantage of the model-based approach over traditional interface development
approaches is that it enables the construction and use of tools to provide assistance to interface
developers. For example, UIDE [Foley 88, Foley 91] has design critics that automatically detect
a variety of inconsistencies in an interface design and evaluate designs using GOMS analysis
[Kieras]85; Humanoid [Luo 93, Szekely 92, Szekely 93] provides model editors and visualizers,
alternatives generators, and interface generators for creating prototypes of a design, even before
the design is complete (Figure 5).

Model-based tools blur the distinction between prototyping and implementation. The models
used in the model-based tools have place-holders for capturing interface designs at several levels

User Interface Prototyping: Tools and Techniques 9

Pedro Szekely

of abstraction, making it possible to capture many of the products of the prototyping process
such as task specifications, system functionality, interface functionality, screen layout and
behavior, and several kinds of design rationale. This same knowledge is used by the run-time
system to implement the interfaces.

Figure 5. The sequence shows snapshots of an interface prototype for a browser application at
different stages of development. The prototype was developed using Humanoid [Szekely 92]. In
the first snapshot, the developer has specified a type-in area for specifying the object to be
browsed, and an area called OBJECT-CONTENTS, where the contents of the object will be shown.
The area is shaded to indicate that the presentation of the object's contents has not been
specified. The second snapshot shows the interface after a few refinement steps. The developer
specified that the contents of the object should be shown in a scrolling area and that it consists of
a list of slot/value pairs, whose presentation is not yet specified. However, the developer
specified that the slot/value pairs should be selectable by clicking the mouse. The prototype
allows the slot/value pairs to be selected, and highlights the selected element, even though the
presentation is not yet specified. The last snapshot shows the completed interface.

Model-based tools also satsify many of the requirements we laid out for prototyping tools. They
provide moderate control over the design, allowing developers to express designs at different
levels of abstraction. The run-time system can prototype the interface before the design is
complete, providing fast turn around for design changes, and allowing end-users to interact with
the prototype before the interface is complete. For example, in Humanoid, the unspecified
portions of the design are displayed as dotted areas to indicate that they are not fully specified
(Figure 5.). Given that designs can be specified at several levels of abstraction, model-based
tools support prototyping throughout the lifecycle of a system, from the initial conceptual design
stages to the detailed refinement of the implementation and maintenance stages.

Even though some model-based tools such as Humanoid provide interactive interfaces for model-
building, prototyping an interface using these tools is not as easy as with facade tools or interface
builders. Model-building involves describing interfaces declaratively, which is not as easy as
drawing pictures. However, model building is easier than programming. Tools for model-
building are being actively researched, and we expect to see substantial improvements with tools
using demonstrational techniques [Myers 87, Myers 89, Myers 92b].

Model-based tools have three main weaknesses. First, they are difficult to use compared to
interface builders, facade tools and paper and pencil, even though current research is addressing
ease of use issues very actively [Myers 92c, Szekely 93]. Second, they provide only moderate
control over the details of highly graphical user interfaces, and third, since the model-based
technology is not mature, the tools are not sufficiently efficient and reliable for widespread use.

Domain-Specific Tools
Domain-specific tools are tools for building special kinds of applications (e.g., database
applications) or applications with specific styles of interfaces (e.g., Hypercard). By focusing on
a narrower domain, these tools can provide powerful facilities for constructing applications very
quickly. Here we look at these tools as prototyping tools because the effort for building

User Interface Prototyping: Tools and Techniques 10

Pedro Szekely

applications is often so small that it compares to the effort needed to build prototypes using the
other prototyping techniques discussed in this paper.

Fourth-generation languages (4GLs) are special purpose programming languages for
constructing database applications [cite]. The language provides facilities for defining the
database schemas, facilities for querying and updating the database, and facilities for defining
forms to allow end-users to query and update the database. The form definition language allows
different kinds of fields to be placed on the screen (e.g., text, numeric, choice), and provides
special support for validating inputs and triggering procedures when the fields are changed.

4GLs are powerful tools. Once the database schemas are defined, most of the work centers
around defining the forms for querying and updating the information in the database. For
example, a database application to store medical histories and billing records for patients in a
private doctor's practice took two weeks to develop. The application features four different
screens of information, supporting different views of the information.

Even though 4GLs are system implementation tools, they satisfy many of the requirements of
prototyping tools outlined in previous sections. 4GLs provide fast turn around for changes and
provide extensive control over details of a design, within the constraints of the database
application domain. The prototypes are, of course, executable.

The main weakness of 4GLs within their narrow domain of applicability is execution speed.
Many 4GLs are claimed to be too slow for large scale applications. Thus, rather than considering
4GLs as implementation languages with strong prototyping features, one might consider 4GLs to
be prototyping tools with enough functionality that the prototype can often serve as the final
system implementation. Compared to other prototyping tools, 4GLs are hard to use, even though
as implementation tools they are reasonably easy to use. 4GLs require training, but can easily be
learned by people without a formal computer science training.

Hypercard is another example of a narrow domain tool. In a previous section we discussed
Hypercard from the point of view of a facade tool and found it to be a good interface prototyping
tool, its main weakness being that it does not produce reusable code. However, for applications
fitting Hypercard's "card" paradigm, Hypercard can be an implementation rather than a
prototyping tool. In these cases, Hypercard's main weakness as a prototyping tool goes away:
Hypercard's scripting language becomes the implementation language, and prototype and
implementation become indistinguishable. Like 4GLs, Hypercard's main weakness is execution
speed and narrow domain of applicability.

Visual Basic [VisualBasic 93] is an application building environment with many features of
interface builders, Hypercard and 4GLs. Visual Basic can be viewed as an interface builder that
uses Basic as the programming language for writing the call-back procedures. The use of Basic is
significant because Basic is an easy to learn interpreted programming language, addressing the
more serious prototyping shortcomings of interface builders: difficulty and slow turn-around for
prototyping behavior and interfaces for application-specific information. Visual Basic can also be
viewed as a Hypercard-like tool where the notion of stacks is relaxed. They both use an easy to
learn scripting language, but VisualBasic supports applications with heterogeneous sets of
windows rather than applications with a stack of similar looking windows. Also, VisualBasic
offers more control over the interface of the application being prototyped since it does not
impose a default interface for browsing a stack of cards (e.g., commands to go to the next and
previous cards, etc.). VisualBasic can also be viewed as a 4GL given its connectivity to databases
and its facilities to build the windows to interact with the information. The main advantage of
VisualBasic over 4GLs are its powerful interface builder-like capabilities, which are not found in
most 4GL tools.

User Interface Prototyping: Tools and Techniques 11

Pedro Szekely

Products of the prototyping process

P a p e r &
Pencil

Facade Tools Interface
Builders

Model-based
Tools

Domain-
specific
Tools

Actual
Implementati
on

Task spec. Yes No No Yes No No

System
functionality

Yes No No Yes Yes Yes

Interface
functionality

Yes Implicit Implicit Yes Implicit Implicit

Screen
Layout &
Behavior

Yes Yes Yes (static)

No (dynamic)

Yes Yes Yes

Design
Rationale

Yes No No Partially No No

User
Feedback
Record

Yes No No No No No

Response
Times

No Yes Yes Yes Yes Yes

Reusable
Code

No No Yes Yes Yes Yes

Table 1. The table shows the ability of different classes of prototyping tools and techniques to
help developers collect different kinds of information needed for effective user interface
development.

Actual Implementation
We finish our survey of interface prototyping tools by discussing the strengths and weaknesses
of using the actual implementation of a system as its own prototype. Given that interface
software is complex and large, there are not many benefits in using the actual implementation of
a system for prototyping purposes, except for the case of domain-specific tools discussed in the
previous section. The actual implementation of a system fails to meet the most fundamental
requirements of prototyping tools: ease of use allowing participation by graphic artists, domain
experts, end-users and other experts lacking programming expertise, and slow turnaround to
changes.

SUMMARY
Tables 1 and 2 summarize the strengths and weaknesses of the different prototyping techniques
discussed in the previous sections. Table 1 compares prototyping techniques with respect to their
ability to deliver the products expected from the prototyping process. Table 2 compares the
techniques from the point of view of requirements for supporting the prototyping process.

Table 1. shows that paper and pencil, or an electronic version of them, are an invaluable
complement to all other prototyping techniques. Paper and pencil can be used to record all kinds
of information that cannot be captured using the other tools. From the point of view of capturing
the products of the prototyping process, the model-based tools are the best. However, as shown
in Table 2. model-based tools do not satisfy the requirements to support the prototyping process
as effectively as some of the others.

User Interface Prototyping: Tools and Techniques 12

Pedro Szekely

Prototyping tool requirements

P a p e r &
Pencil

Facade Tools Interface
Builders

Model-based
Tools

Domain-
specific
Tools

Actual
Implementati
on

Ease of Use Excellent Good Good Fair Good,
moderate

Poor

Fast
Turnaround

Excellent Excellent Good Excellent Good Poor

Extensive
Control

Excellent Excellent Good Moderate Fair

Good within
domain

Excellent

Data
Collection

Good Fair Fair Excellent Good Good

Executable
Prototypes

None Moderate Good Excellent Excellent Excellent

Lifecycle
Support

Good Moderate Moderate Good Moderate Poor

Team Design Good Poor Poor Poor Poor Fair

Version
Control

Poor Poor Poor Poor Poor Fair

Table 2. The table shows the extent to which different classes of prototyping tools and techniques
satisfy a variety of requirements for effective interface prototyping.

Table 2. shows that there is no single technique or class of tools that is uniformly better at
satisfying all the requirements of the prototyping process. Paper and pencil are excellent in terms
of ease of use, fast turnaround and extensive control over details. However, the impossibility to
execute the prototypes limits their applicability to the early stages of the design. Facade tools are
the next best in terms of the first three requirements, but as Table 1. shows, they cannot produce
reusable code, a serious shortcoming. Interface builders satisfy the requirements of the
prototyping process fairly well, but their lack of support for prototyping behavior limits their
applicability to only some aspects of the complete interface. The domain-specific tools, when
applicable, are the most effective tools.

RESEARCH ISSUES
Tables 1. and 2. show that interface tools and techniques can still be improved substantially.

Model-based tools are making substantial progress in capturing the different types of information
needed for construcing interfaces. However, the tables suggest that a good complement to all
other tools would be a mechanism for annotating the formal objects of the tools with arbitrary
text and graphics. Such annotations would be like the yellow PostItTM notes often used in office
environments. They would be used to capture information that cannot be captured in the specific
tools, and in addition, remain attached to the objects of interest.

Ease of use is a big concern. Currently, paper and pencil, and facade tools are the easiest to use
for prototyping complex interface features. We expect the popularity of these tools to decrease as
the flexibility and ease of use of tools that can produce reusable code increases. For example,
demonstrational techniques are being used in Garnet [Myers 92c] and Druid [Singh 90] to allow
designers to specify more complex behavior and application-specific displays with the same ease
with which interface builders let designers specify the static portions of a display.

Model-based tools offer a lot of promise for both interface prototyping and implementation.
However, further research is needed to bring them into the main-stream. None of the existing
model-based tools have the capability of modeling arbitrary interfaces, and the algorithms for

User Interface Prototyping: Tools and Techniques 13

Pedro Szekely

interpreting the models to produce the interfaces are slow compared with the special purpose
procedural implementations used today.

Support for team-design and version control are lacking from most of the tools discussed in this
paper. Only paper and pencil tools provide some support for team design. Pictive and
TelePICTIVE [Miller 92] are examples of paper and pencil tools which address team design as
one of their mayor concerns.

REFERENCES
Astound 93 Astound User's Guide. Gold Disk Inc. P.O. Box 789, Streetsville, Mississauga,

Ontario, Canada L5M 2C2.

Bewely 83 W. L. Bewely, T. L. Roberts, D. Schroit and W. L. Verplank. Human Factors
Testing in the Design of Xerox's 8010 'Star' Office Workstation. In Human
Factors in Computing Systems, pages 72-77. Proceedings SIGCHI'83, Boston,
MA, December, 1983.

BlueSky 91 WindowsMAKER. Blue Sky Software Corporation, 2375 East Tropicana Ave.,
Suite 320, Las Vegas, NV 89119. Phone (702) 465-6365, 1991.

Boies 85 S. J. Boies, J. D. Gould, S. Levy, J. T. Richards and J. W. Schoonard. The 1984
Olympic Message System—A Case Study in System Design. IBM Research
Report RC-1138, 1985.

Brooks 79 F. P. Brooks. The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley, 1979.

Buxton 80 W. Buxton and R. Sniderman. Iteration in the Design of the Human-Computer
Interface. In Proceedings of the 13th Annual Meeting of the Human Factors
Association of Canada. 1980, pp. 72-80.

Foley 88 J. Foley, C. Gibbs, W. Kim, and S. Kovacevic, A Knowledge Base for a User
Interface Management System, Proceedings CHI '88 - 1988 SIGCHI Computer-
Human Interaction Conference, ACM, New York, 1988, pp. 67-72.

Foley 91 J. Foley, W. Kim, S. Kovacevic and K. Murray, UIDE - An Intelligent User
Interface Design Environment, in J. Sullivan and S. Tyler (eds.) Architectures
forIntelligent User Interfaces: Elements and Prototypes, Addison-Wesley,
Reading MA, 1991, pp.339-384.

Gould 85 J. D. Gould and C. H. Lewis. Designing for Usability - Key Principles and What
Designers Think. Communications of the ACM 28(3):300-311, March, 1985.

Hypercard 92 Claris Corporation, 1992.

Kieras 85 D. E. Kieras and P. G. Polson. An Approach to the Formal Analisys of User
Complexity. International Journal of Man Machine Studies, 22, 365-394.

Luo 93 P. Luo, P. Szekely and R. Neches: Management of interface design in
HUMANOID. In Proceedings INTERCHI’93. April 93.

MacroMind 90 MacroMind Director. MacroMind, 410 Townsend, Suite 408, San
Francisco, CA 94107. Phone (415) 442-0200. 1990.

Mahler 90 P. Mahler. An Informix-4GL Tutorial. Prentice Hall, Englewood Cliffs, NJ
07632, 1990.

User Interface Prototyping: Tools and Techniques 14

Pedro Szekely

Miller 92 D. S. Miler, J. G. Smith and M. J. Muller. TelePICTIVE: Computer-Supported
Collaborative GUI Design for Designers with Diverse Expertise. In UIST'92
Proceedings, 1992, pp. 151-160.

Morgan 83 C. Morgan, G. Wiliams and P. Lemmons. An Interview with Wayne Rosig,
Bruce Daniels and Larry Tesler. Byte 8(2):90-114, February, 1983

Myers 87 B. A. Myers. Creating Dynamic Interaction Techniques by Demonstration.
Proceedings of ACM CHI+GI'87 Conference on Human Factors in Computing
Systems and Graphics Interface. 1987. pp.271-178.

Myers 89 B. A. Myers, B. Vander Zanden and R. B. Dannenberg. Creating Graphical
Interactive Application Objects by Demonstration. Proceedings of ACM
SIGGRAPH 1989 Symposium on User Interface Software and Technology (UIST
'89), 1989, pp.95-104.

Myers 92a B. A. Myers and M. B. Rosson. Survey on user interface programming. In
Proceedings of CHI'92, The National Conference on Computer-Human
Interaction, May, 1992, pp. 195-202.

Myers 92b B. A. Myers. State of the Art in User Interface Software Tools. In H. Rex
Hartson and Deborah Hix, Ed. , Advances in Human-Computer Interaction,
Volume 4, Ablex Publishing, 1992.

Myers 92c B. Myers, et. al. The Garnet Reference Manuals. Technical Report CMU-CS-90-
117-R2, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA 15213. May 1992.

NeXT 91 NeXTStep and the neXT Interface Builder. NeXT, Inc. 900 Chesapeake Drive,
Redwood City, CA 94063. 1991.

Puerta 93 A. Puerta. The Study of Models of Intelligent Interfaces. In Proceedings of the
ACM International Workshop on Intelligent User Interfaces. Jan, 1993. pp. 71-
78.

Rosson 87 M. B. Rosson, S. Maass and W. A. Kellogg. Designing for Designers: An
Analysis of Design Practices in the Real World. In Human Factors in Computing
Systems, pp. 137-142. CHI+GI'87, Toronto, Ont., Canada, April, 1987.

Rudd 94 J. Rudd and S. Isensee. Twenty-Two Tips for a Happier, Healthier Prototype.
ACM Interactions 1(1):35-41. January, 1994.

Singh 90 G. Singh, C. H. Kok, and T. Y. Ngan. Druid: A system for Demonstrational
Rapid User Interface Development. Proceedings of ACM SIGGRAPH 1990
Symposium on User Interface Software and Technology (UIST '90), 1990,
pp.167-177.

SmethersBarnes 90 Prototyper 3.0. SmethersBarnes, P. O. Box 639, Portland, Oregon 97207,
Phone (503) 274-7179, 1990.

Swartout 82 W. Swartout and R. Balzer. The Inevitable Intertwining of Specification and
Implementation. Communications of the ACM 25(7):438-440, July, 1982.

Szekely 92 P. Szekely, P, Luo, and R. Neches. Facilitating the Exploration of Interface
Design Alternatives: The HUMANOID Model of Interface Design. In Proceedings
SIGCHI’92. May 1992, pp. 507-515.

User Interface Prototyping: Tools and Techniques 15

Pedro Szekely

Szekely 93 P. Szekely, P. Luo, and R. Neches. Beyond Interface Builders: Model-Based
Interface Tools. In Proceedings of INTERCHI'93 April, 1993, pp. 383-390.

VisualBasic 93 Visual bassic Programmer's Guide. Microsoft Corporation, One Microsoft
Way, Redmond, WA 98052-6399.

VisualEdge 90 UIMX. Visual Edge Software Ltd., 3870 Cote Vertu, Montreal, Quebec,
Canada H4R 1V4. Phone (514) 332-6430, 1990.

Wiecha 90 C. Wiecha, W. Bennett, S. Boies, J. Gould and S. Greene. ITS: A Tool For
Rapidly Developing Interactive Applications. ACM Transactions on Information
Systems 8(3), July 1990. pp. 204-236.

Wong Y. Y. Wong. Rough and Ready Prototypes: Lessons form Graphic Design. in
CHI'92, Posters and Short Talks. May, 1992.

