
User Interface Software Tools

BRAD A. MYERS

Carnegie Mellon University

Almost as long as there have been user interfaces, there have been special software systems and
tools to help design and implement the user interface software. Many of these tools have
demonstrated significant productivity gains for programmers, and have become important

commercial products. Others have proven less successful at supporting the kinds of user
interfaces people want to build. This article discusses the different kinds of user interface
software tools, and investigates why some approaches have worked and others have not. Many

examples of commercial and research systems are included. Finally, current research directions
and open issues in the field are discussed.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques—user
interfaces; H. 1.2 [Models and Principles]: User/Machine Systems—human factors; H.5.2

[Information Interfaces and Presentation]: User Interfaces—user interface management

systems; 1.2.2 [Artificial Intelligence]: Automatic Programming-program synthesis

General Terms: Human Factors, Languages

Additional Key Words and Phrases: Interface builders, toolkits, user interface development

environments, user interface software

1. INTRODUCTION

User interface software is often large, complex, and difficult to implement,

debug, and modify. One study found that an average of 48% of the code of

applications is devoted to the user interface, and that about 50% of the

implementation time is devoted to implementing the user interface portion

[Myers and Rosson 1992]. As interfaces become easier to use, they become

harder to create [Myers 1994]. Today, direct-manipulation interfaces (also

called “GUIS” for Graphical User Interfaces) are almost universal: one 1993

This research was sponsored by the Avionics Lab, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, under contract

F33615-90-C-1465, Arpa Order No. 7597. The views and conclusions contained in this document

are those of the authors and should not be interpreted as representing the official policies, either

expressed or implied, of the U.S. Government.
This article is revised from an earlier version which appeared as: Brad A. Myers, “State of the

Art in User Interface Software Tools.” In Aduances in Human-Computer Interaction, H. Rex
Hartson and D. Hix, Eds. Vol. 4. Ablex, Norwood, N.J., pp. 110-150.
Author’s address: Computer Science Department, Carnegie Mellon University, 5000 Forbes

Avenue, Pittsburgh, PA 15213; email: bam@cs.cmu.edu.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
@ 1995 ACM 1073-0516/95/0300-0064 $03.50

ACM Transactions on Computer-Human Interaction, Vol. 2, No 1, March 1995, Pages 64-103

User Interface Software Tools . 65

study found that 97% of all software development on Unix involved a GUI [X

Business Group 1994, p. 80]. These interfaces require that the programmer

deal with elaborate graphics, multiple ways for giving the same command,

multiple asynchronous input devices (usually a keyboard and a locator or

pointing device such as a mouse), a “mode-free” interface where the user can

give any command at virtually any time, and rapid “semantic feedbac~

where determining the appropriate response to user actions requires special-

ized information about the objects in the program. Tomorrow’s user interfaces

will provide speech and gesture recognition, intelligent agents and integrated

multimedia, and will probably be even more difficult to create. Furthermore,

because user interface design is so difficult, the only reliable way to get good

interfaces is to have iterative redesign (and therefore reimplementation) of

the interfaces after user testing, which makes the implementation task even

harder.

Fortunately, there has been significant progress in software tools to help

create user interfaces, and today, virtually all user interface software is

created using tools that make the implementation easier. For example, the

MacApp system from Apple has been reported to reduce development time by

a factor of four or five [Schmucher 1986]. A study commissioned by NeXT

claims that the average application programmed using the NeXTStep envi-

ronment wrote 83$% fewer lines of code and took one-half the time compared

to applications written using less advanced tools, and some applications were

completed in one-tenth the time [Booz Allen and Hamilton 1992].

Furthermore, user interface tools are a major business. In the Unix market

alone, over $133 million of tools were sold in 1993, which is about 50,000

licenses [X Business Group 1994]. This is a 64$% increase over 1992. Forrester

Research claims that the total market for UI software tools on all platforms,

including “vertical tools” which include database and user interface construc-

tion tools, will be 130,000 developers generating $400 million in revenue.

They estimate that this will double each year, growing to 700,000 developers

and $1.2 billion by 1996 [DePalma and Woodring 1993].

Mark Hanner (private communication) from the Meta Group market re-

search firm says that the user interface tool market is about to explode,

Whereas the “first generation” of commercial tools was not fully graphical nor

sufficiently powerful, this is no longer true for today’s tools. Furthermore,

prices for tools have dropped significantly, and fees for run-times have been

mostly eliminated (so that designers do not have to pay the tool creator for

products created using the tools). For the future, there is still a tremendous

opportunity for good tools, especially in niche areas like multimedia, dis-

tributed systems, and geographical information systems.

This article surveys user interface software tools, and explains the different

types and classifications. There have been many previous surveys on this

topic, e.g., Hartson and Hix [1989] and Myers [1989], but since this is a
fast-changing Geld, a new one seemed in order. AIso, this article take~ Q

broader approach and includes more components of user interface software,

including windowing systems. However, it is now impossible to discuss all

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

66 . Brad A. Myers

user interface tools, since there are so many. 1 For example, there are over

100 commercial graphical user interface builders, and many new research

tools are reported every year at conferences such as the ACM User Interface

Software and Technology Symposium (UIST) and the ACM SIGCHI confer-

ences. There are also about three PhD theses on user interface tools every

year. Therefore, this article provides an overview of the most popular ap-

proaches, rather than an exhaustive survey.

2. DEFINITIONS

The user interface (UI) of a computer program is the part that handles the

output to the display and the input from the person using the program. The

rest of the program is called the application or the application semantics.

User interface tools have been called various names over the years, with

the most popular being User Interface Management Systems (UIMS) [Olsen

1992]. However, many people feel that the term UIMS should be used only for

tools that handle the sequencing of operations (what happens after each

event from the user), so other terms like Toolkits, User Interface Development

Environments, Interface Builders, Interface Development Tools, and Applica-

tion Frameworks have been used. This article will try to define these terms

more specifically, and use the general term “user interface tool” for all

software aimed to help create user interfaces. Note that the word “tool” is

being used to include what are called “toolkits,” as well as higher-level tools,

such as Interface Builders, that are not toolkits.
Four different classes of people are involved with user interface software,

and it is important to have different names for them to avoid confusion. The

first is the person using the resulting program, who is called the end-user or

just user. The next person creates the user interface of the program, and is

called the user interface designer or just designer. Working with the user

interface designer will be the person who writes the software for the rest of

the application. This person is called the application programmer. The

designer may use special user interface tools which are provided to help

create user interfaces. These tools are created by the tool creator. Note that

the designer will be a user of the software created by the tool creator, but we

still do not use the term “user” here to avoid confusion with the end-user.

Although this classification discusses each role as a different person, in fact,

there may be many people in each role, or one person may perform multiple

roles. The general term programmer is used for anyone who writes code, and

may be a designer, application programmer, or tool creator.

3. IMPORTANCE OF USER INTERFACE TOOLS

There are many advantages to using user interface software tools. These can

be classified into two main groups:

(1) The quality of the interfaces will be higher. This is because:

1A partial list, which is frequently updated, is available through Mosaic or other world-wide-web
interfaces as http:/ /www.cs.cmu.edu: 800 l/afs/cs.cmu.edu/user/bam/www\toolnames.html.

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995

User Intetiace Software Tools . 67

—Designs can be rapidly prototyped and implemented, possibly even

before the application code is written.

—It is easier to incorporate changes discovered through user testing.

—There can be multiple user interfaces for the same application.

—More effort can be expended on the tool than may be practical on any

single user interface since the tool will be used with many different

applications.

—Different applications are more likely to have consistent user interfaces

if they are created using the same user interface tool.

—It will be easier for a variety of specialists to be involved in designing

the user interface, rather than having the user interface created en-

tirely by programmers. Graphic artists, cognitive psychologists, and

human factors specialists may all be involved. In particular, profes-

sional user interface designers, who may not be programmers, can be in

charge of the overall design.

(2) The user interface code will be easier and more economical to

create and maintain. This is because:

—Interface specifications can be represented, validated, and evaluated

more easily.

—There will be less code to write, because much is supplied by the tools.

—There will be better modularization due to the separation of the user

interface component from the application. This should allow the user

interface to change without affecting the application, and a large class

of changes to the application (such as changing the internal algo-

rithms) should be possible without affecting the user interface.

—The level of programming expertise of the interface designers and

implementors can be lower, because the tools hide much of the com-

plexities of the underlying system.

—The reliability of the user interface will be higher, since the code for the

user interface is created automatically from a higher-level specification.

—It will be easier to port an application to different hardware and

software environments since the device dependencies are isolated in

the user interface tool.

Based on these goals for user interface software tools, we can list a number

of important functions that should be provided. This list can be used to

evaluate the various tools to see how much they cover. Naturally, no tool will

help with everything, and different user interface designers may put different

emphasis on the different features.

In general, the tools might:

—help design the interface given a specification of the end-users’ tasks,

—help implement the interface given a specification of the design,

—help evaluate the interface after it is designed and propose improvements,

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

68 . Brad A. Myers

or at least provide information to allow the designer to evaluate the

interface,

—create easy-to-use interfaces,

—allow the designer to investigate different designs rapidly,

—allow nonprogrammers to design and implement user interfaces,

—allow the end-user to customize the interface,

—provide portability, and

—be easy to use themselves.

This might be achieved by having the tools:

—automatically choose which user interface styles, input devices, widgets,

etc. should be used,

—help with screen layout and graphic design,

—validate user inputs,

—handle user errors,

—handle aborting and undoing of operations,

—provide appropriate feedback to show that inputs have been received,

—provide help and prompts,

—update the screen display when application data changes,

—notify the application when the user updates application data,

—deal with field scrolling and editing,

—help with the sequencing of operations,

—insulate the application from all device dependencies and the underlying

software and hardware systems,

—provide customization facilities to end-users, and

—evaluate the graphic design and layout, usability, and learnability of the

interface.

4. OVERVIEW OF USER INTERFACE SOFTWARE TOOLS

Since user interface software is so difficult to create, it is not surprising that

people have been working for a long time to create tools to help with it.

Today, many of these tools and ideas have progressed from research into

commercial systems, and their effectiveness has been amply demonstrated.

Research systems also continue to evolve quickly, and the models that were

popular five years ago have been made obsolete by more effective tools,
changes in the computer market (e.g., the demise of OpenLook will take with

it a number of tools), and the emergence of new styles of user interfaces such

as pen-based computing and multimedia.

4.1 Components of User Interface Software

As shown in Figure 1, user interface software may be divided into various

layers: the windowing system, the toolkit, and higher-level tools. Of course,

many practical systems span multiple layers.

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

User Interface Software Tools . 69

I Apprlhauhmrl I

I Higher-level Tools I

I=z%A ‘isc”ssedinthisartic’
Fig. 1. The components of user interface software

I operating system I

The windowing system supports the separation of the screen into different

(usually rectangular) regions, called windows. The X system [Scheifler and
Gettys 1986] divides the window functionality into two layers: the window

system, which is the functional or programming interface, and the window

manager which is the user interface. Thus the “window system” provides

procedures that allow the application to draw pictures on the screen and get

input from the user, and the “window manager” allows the end-user to move

windows around, and is responsible for displaying the title lines, borders, and

icons around the windows. However, many people and systems use the name

“window manager” to refer to both layers, since systems such as the Macin-

tosh and Microsoft Windows do not separate them. This article will use the X

terminology, and use the term “windowing system” when referring to both

layers.

On top of the windowing system is the toolkit, which contains many

commonly used widgets such as menus, buttons, scroll bars, and text input

fields. On top of the toolkit might be higher-leuel tools, which help the

designer use the toolkit widgets. The following sections discuss each of these

components in more detail.

5. WINDOWING SYSTEMS

A windowing system is a software package that helps the user monitor and

control different contexts by separating them physically onto different parts

of one or more display screens. A survey of various windowing systems was

published earlier [Myers 1988a]. Although most of today’s systems provide

toolkits on top of the windowing systems, as will be explained below, gener-

ally toolkits address only the drawing of widgets such as buttons, menus, and

scroll bars. Thus, when the programmer wants to draw application-specific

parts of the interface and allow the user to manipulate these, the window

system interface must be used directly. Therefore, the windowing system’s

programming interface has significant impact on most user interface pro-

grammers.

The first windowing systems were implemented as part of a single program

or system. For example, the EMACS text editor [Stallman 1979] and the
Smsdltalk [Tesler 1981] and DLISP [Teitelman 1979] programming environ-
ments had their own windowing systems. Later systems implemented the

windowing system as an integral part of the operating system, such as

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

70 . Brad A. Myers

Sapphire for PERQs [Myers 1984], SunView for Sun, and the Macintosh,

NeXT, and Microsoft Windows systems. In order to allow different windowing

systems to operate on the same operating system, some windowing systems,

such as X and Sun’s NeWS, operate as a separate process, and use the

operating system’s interprocess communication mechanism to connect to

applications.

5.1 Structure of Windowing Systems

A windowing system can be logically divided into two layers, each of which

has two parts (see Figure 2). The window system, or base layer, implements

the basic functionality of the windowing system. The two parts of this layer

handle the display of graphics in windows (the output model) and the access

to the various input devices (the input model), which usually includes a
keyboard and a pointing device such as a mouse. The primary interface of the

base layer is procedural, and is called the windowing system’s application or

program interface.

The other layer of windowing system is the window manager or user

interface. This includes all aspects that are visible to the user. The two parts
of the user interface layer are the presentation, which is comprised of the

pictures that the window manager displays, and the commands, which are

how the user manipulates the windows and their contents.

5.2 Base Layer

The base layer is the procedural interface to the windowing system. In the
1970s and early 1980s, there were a large number of different windowing

systems, each with a different procedural interface (at least one for each
hardware platform). People writing software found this to be unacceptable

because they wanted to be able to run their software on different platforms,

but they would have to rewrite significant amounts of code to convert from

one window system to another. The X windowing system [Scheifle and Gettys
1986] was created to solve this problem by providing a hardware-independent

interface to windows. X has been quite successful at this, and has driven

virtually all other windowing systems out of the workstation hardware

market. In the small-computer market, the Macintosh runs its own window

system, and IBM PC-class machines primarily run Microsoft Windows or

IBMs Presentation Manager (part of 0S/2).

5.2.1 Output Model. The output model is the set of procedures that an
application can use to draw pictures on the screen. It is important that all

output be directed through the window system so that the graphics primi-

tives can be clipped to the window’s borders. For example, if a program draws

a line that would extend out of a window’s borders, it must be clipped so that

the contents of other, independent, windows are not overwritten. Most win-

dowing systems provide special escapes that allow programs to draw directly

to the screen, without using the window system’s clipping. These operations
can be much quicker, but are very dangerous and therefore should seldom be

used. Most modern computers provide graphics hardware that is specially

optimized to work efficiently with the window system.

ACM Transactions on Computer-HUman Interaction, Vol. 2, No. 1, March 1996.

User Interface Software Tools . 71

Fig. 2. The windowing system can be divided into two layers, called the base or window system

layer, and the user interface or window manager layer. Each of these can be divided into parts

that handle output and input.

In early windowing systems, such as Smalltalk [Tesler 1981], Blit [Pike

1983], and Sapphire [Myers 1986], the primary output operation was BitBlt

(also called “RasterOp”). Primarily these systems supported monochrome

screens (each pixel is either black or white). BitBlt takes a rectangle of pixels

from one part of the screen and copies it to another part. Various boolean

operations can be specified for combining the pixel values of the source and

destination rectangles. For example, the source rectangle can simply replace

the destination, or it might be XORed with the destination. BitBlt can be

used to draw solid rectangles in either black or white, display text, scroll

windows, and perform many other effects [Ingalls 1981]. The only additional

drawing operation that was typically supported by these early systems was

for drawing straight lines.

Later windowing systems, such as the Macintosh and X, added a full set of

drawing operations, such as filled and unfilled polygons, text, lines, arcs, etc.

These cannot be implemented using the BitBlt operator. With the growing

popularity of color screens and nonrectangular primitives (such as rounded

rectangles), the use of BitBlt has significantly decreased, It is primarily used

now for scrolling and copying off-screen pictures onto the screen (e.g., to

implement double-buffering).

A few windowing systems allow the full Postscript imaging model [Adobe

Systems 1985] to be used to create images on the screen. Postscript provides

device-independent coordinate systems and arbitrary rotations and scaling

for all objects, including text. Another advantage of using Postscript for the

screen is that the same language can be used to print the windows on paper

(since many printers accept Postscript). Sun created a version used in the

NeWS windowing system, and then Adobe (the creator of Postscript) came

out with an official version called “Display Postscript” which is used in the

NeXT windowing system and is supplied as an extension to the X windowing

system by a number of vendors, including DEC and IBM.

All of the standard output models only contain drawing operations for

two-dimensional objects. Two extensions to support 3D objects are PEX and

OpenGL. PEX [Gaskins 1992] is an extension to the X windowing system that

incorporates much of the PHIGS graphics standard. OpenGL (by Silicon

(%aphics, Inc.) is based on the GL proaamming interface that has been used

for many years on Silicon Graphics machines. OpenGL provides machine

independence for 3D since it is available for various X platforms (Silicon

ACM Transactions on Computer-Human Interaction, Vol 2, No. 1, March 1995

72 . Brad A, Myers

Graphics, Inc., Sun, etc.) and will be included as a standard part of new

versions of Microsoft Windows.

As shown in Figure 3, the earlier windowing systems assumed that a

graphics package would be implemented using the windowing system. For

example, the CORE graphics package was implemented on top of the Sun-

View windowing system. All newer systems, including the Macintosh, X,

NeWS, NeXT, and Microsoft Windows, have implemented a sophisticated

graphics system as part of the windowing system.

5.2.2 Input Model. The early graphics standards, such as CORE and

PHIGS, provided an input model that does not support the modern, direct-

manipulation style of interfaces. In those standards, the programmer calls a

routine to request the value of a “virtual device” such as a “locator”

(pointing-device position), “string” (edited text string), “choice” (selection

from a menu), or “pick (selection of a graphical object). The program would

then pause waiting for the user to take action. This is clearly at odds with the

direct-manipulation “mode-free” style, where the user can decide whether to

make a menu choice, select an object, or type something.

With the advent of modern windowing systems a new model was provided:

a stream of event records is sent to the window which is currently accepting

input. Using various commands, the user can select which window is getting

events (described in Section 5.3). Each event record typically contains the

type and value of the event (e.g., which key was pressed), the window that the

event was directed to, a time stamp, and the x and y position of the mouse.

The windowing system queues keyboard events, mouse button events, and

mouse movement events together (along with other special events), and

programs must dequeue the events and process them. It is somewhat surpris-

ing that, although there has been substantial progress in the output model

for windowing systems (from BitBlt to complex 2D primitives to 3D), input is

still handled in essentially the same way today as in the original windowing

systems, even though there are some well-known unsolved problems with

this model:

—There is no provision for special stop-output (control-S) or abort (control-C,

command-dot) events, so these will be queued with the other input events.

—The same event mechanism is used to pass special messages from the

windowing system to the application. When a window gets larger or

becomes uncovered, the application must usually be notified so it can

adjust or redraw the picture in the window, Most window systems commu-

nicate this by enqueuing special events into the event stream, which the

program must then handle.

—The application must always be willing to accept events in order to process

aborts and redrawing requests. If not, then long operations cannot be

aborted, and the screen may have blank areas while they are being

processed.

—The model is device dependent, since the event record has fixed fields for

the expected incoming events. If a 3D pointing device or one with more

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995,

User Interface Software Tools . 73

Samhire. SunWindows:

$74
AppllcaIlon
Programs

<IL

[
Window ~ User Interface
Svstem ofW.M.

Ceda r. Macintosh. NeXT<.

9
Appllcallon
Progrema

(m)

NeWS. X:

AGraphics
Package

(v

(c)

Fig. 3. Various organizations that have been used by windowing systems. Boxes with extra

borders represent systems that can be replaced by users. Early systems (a) tightly coupled the

window manager and the window system, and assumed that sophisticated graphics and toolkits

would be built on top. The next step in designs (b) was to incorporate into the windowing system
the graphics and toolkits, so that the window manager itself could have a more sophisticated look
and feel, and so applications would be more consistent. Other systems (c) allow different window
managers and different toolkits, while still embedding sophisticated graphics packages.

ACM Transactions on Computer-Human Interaction, Vol. 2, No, 1, March 1995.

74 . Brad A. Myers

than the standard number of buttons was used instead of a mouse, then

the standard event mechanism cannot handle it.

—Because the events are handled asynchronously, there are many race

conditions that can cause programs to get out of synchronization with the

window system. For example, in the X windowing system, if you press

inside a window and release outside, under certain conditions the program

will think that the mouse button is still depressed. Another example is that

refresh requests from the windowing system specify a rectangle of the

window that needs to be redrawn, but if the program is changing the

contents of the window, the wrong area may be redrawn by the time the

event is processed. This problem can occur when the window is scrolled.

Although these problems have been known for a long time, there has been

little research on new input models (an exception is the Garnet Interactors

model [Myers 1990a]).

5.2.3 Communication. In the X windowing system and NeWS, all commu-

nication between applications and the window system uses interprocess

communication through a network protocol. This means that the application

program can be on a different computer from its windows. In all other

windowing systems, operations are implemented by directly calling the win-

dow manager procedures or through special traps into the operating system.

The primary advantage of the X mechanism is that it makes it easier for a

person to utilize multiple machines with all their windows appearing on a

single machine. Another advantage is that it is easier to provide interfaces for

different programming languages: for example the C interface (called xlib)

and the Lisp interface (called CLX) send the appropriate messages through

the network protocol. The primary disadvantage is efficiency, since each

window request will typically be encoded, passed to the transport layer, and

then decoded, even when the computation and windows are on the same

machine.

5.3 User Interface Layer

The user interface of the windowing system allows the user to control the

windows. In X, the user can easily switch user interfaces, by killing one

window manager and starting another. Popular window managers under X

include uwm (which has no title lines and borders), twin, mwm (the Motif

window manager), and olwm (the OpenLook window manager). There is a

standard protocol through which programs and the base layer communicate

to the window manager, so that all programs continue to run without change

when the window manager is switched. It is possible, for example, to run

applications that use Motif widgets inside the windows controlled by the

OpenLook window manager.

A complete discussion of the options for the user interfaces of window

managers was previously published [Myers 1988a]. Also, the video All the

Widgets [Myers 1990b] has a 30-minute segment showing many different

forms of window manager user interfaces.

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

User Interface Software Tools . 75

Some parts of the user interface of a windowing system, which is some-

times called its “look and feel,” can apparently be copyrighted and patented.

Which parts is a highly complex issue, and the status changes with decisions

in various court cases. Good references for more information are the “Legally

Speakin# columns of Communications of the ACM, e.g., Samuelson [1993].

5.3.1 Presentation. The presentation of the windows defines how the

screen looks. One very important aspect of the presentation of windows is

whether they can overlap or not. Overlapping windows, sometimes called

covered windows, allow one window to be partially or totally on top of another

window, as shown in Figure 4. This is also sometimes called the desktop

metaphor, since windows can cover each other like pieces of paper can cover

each other on a desk.2 The other alternative is called tiled windows, which

means that windows are not allowed to cover each other. Figure 5 shows an

example of tiled windows. Obviously, a window manager that supports cov-

ered windows can also allow them to be side-by-side, but not vice-versa.

Therefore, a window manager is classified as “covered” if it allows windows to

overlap.

The tiled style was popular for awhile, and was used by Cedar [Swinehart

et al. 1986], and early versions of the Star [Smith et al. 1982], Andrew [Palay

et al. 1988], and Microsoft Windows. A study even suggested that using tiled

windows was more eficient for users [Bly and Rosenberg 1986]. However,

today tiled windows are rarely seen, because generally users prefer overlap-

ping.

Another important aspect of the presentation of windows is the use of icons

(also shown in Figures 4 and 5). These are small pictures that represent
windows (or sometimes files). They are used because there would otherwise

be too many windows to manage and fit conveniently on the screen. Other

aspects of the presentation include whether the window has a title line or not,

what the background (where there are no windows) looks like, and whether

the title and borders have control areas for performing window operations.

5.3.2 Commands. Since computers have multiple windows and typically

only one mouse and keyboard, there must be a way for the user to control

which window is getting keyboard input. This window is called the input (or

keyboard) focus. Another term is the listener since it is listening to the user’s

typing. Some systems called the focus the “active window” or “current win-

dow,” but these are poor terms since in a multiprocessing system, many

windows can be actively outputting information at the same time. Window

managers provide various ways to specify and show which window is the

listener. The most important options are:

—click-to-type, which means that the user must click the mouse button in a

window before typing to it. This is used by the Macintosh.

2There are usually other aspects to the desktop metaphor, however, such as presenting file
operations in a way that mimics offke operations, as in the Star offke workstation [Smith et al.
1982].

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

76 . Brad A. Myers

6 File Edit fliew label Special SUll 10:39:42 RMW @ B
,, .,,,.. ,, .,,... ,. ...,. ... ,, .,,. ., .,..,.,,,, ., :, :., .,., ,, .,,::,:.,:::

,,.:., :: :..,.: Control Pmels :..,.:,.:........,. : .,..,..:, .,.,,. ...:,,.,....,.... .,,,,.,,..,...,................
34items

.....~.~
7!

New F

1P
— r , l-k m

—r

=.,

d — ,- I Iml”: ,%?
ngmeen~), } ~ CxpressFaxFolder – folder

~ Exprm$ModemReadMe
,,, -.

L
8K TewhTextdocument‘, :. :,:: : ::’!:,

p ~ FTPGamesandStuff – folder ,,, .,.,.,,. .=:
“ ,. dr.tl>..mrr~::, . .

VP Q Games – folder !!! ..
.,

❑ 3DTlc-T8c-Toe...
“. @ 5 Stix.,.

~ 5 Stix ReedMe
7r~.Cepfr FrA-em&*fms

Fig. 4. A screen from the Macintosh showing three windows covering each other, and some
icons along the right margin.

—move-to-type, which means that the mouse only has to move over a window

to allow typing to it. This is usually faster for the user, but may cause

input to go to the wrong window if the user accidentally knocks the mouse.

Most X window managers (including the Motif and OpenLook window man-

agers) allow the user to choose which method is desired. However, the choice

can have significant impact on the user interface of applications. For exam-

ple, because the Macintosh requires click-to-type, it can provide a single

menu bar at the top, and the commands can always operate on the focused

window. With move-to-type, the user might have to pass through various

windows (thus giving them the focus) on the way to the top of the screen.

Therefore, Motif applications must have a menu bar in each window so the

commands will know which window to operate on.

All covered window systems allow the user to change which window is on

top (not covered by other windows), and usually to send a window to the

bottom (covered by all other windows). Other commands allow windows to be

changed size, moved, created, and destroyed.

6. TOOLKITS

A toolkit is a library of” widgets” that can be called by application programs.

A widget is a way of using a physical input device to input a certain type of

value. Typically, widgets in toolkits include menus, buttons, scroll bars, text

type-in fields, etc. Figure 6 shows some examples of widgets. Creating an

interface using a toolkit can only be done by programmers, because toolkits

only have a procedural interface.

Using a toolkit has the advantage that the final UI will look and act

similarly to other UIS created using the same toolkit, and each application

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995,

User Interface Software Tools . 77

~“
—-....--.-—.-.——e ~..,

.-, -.,. L’ ~.: :. .’. . .,
! ,,, .? 14,,1 , ,.?” ., ,*.

~“ ‘“
t.,., ,$.?, r.!ms!, !, , .,.,?..”.,>,.

,!, ,,, ,,. ,.,,.-, .” .s.

“L_,-T. ,, : ,,, ,. ,.

,..,,,,, !

.,. ,,,. ..,,

,- ..””,. ‘.,, . ..- .:,.:(’ ,, .,..

, ,,,, ?. .,($.,,

~ “:i!~”’””,,.“. ,.w., ,.,.,,.’., ,.”.,.., . . ‘.. , : : , . ,, ,, ! ,L ,2?!%w.’,’::!...’..:~..i.~T. !.= ,’,.?. L !. “

..4 .. W.,.’’.... . . . ?... !.$. .,.. ,“,, ,.4 ,.s.’): .::?88. ,., , ‘JI ---.’, ,“,,. ~’~~-$,.-. .~,,.”~.,-,$ $- ,-~- ,, , ~ - ! ,. ~~,.,.,,,, “ ‘:” ::: ‘-”-+-, .,. . :,,
* ““’ ““

,,$

,

I T
,:,.,,,,.,,,,..

I ,, -’“,:;;:.-’”.’::.-.:,;“: :’; ,“ ,

. “’

!:, .

~.

I

Fig. 5. A screen from the Cedar windowing system. Windows are “tiled” into 2 columns. There is

a row of icons along the bottom. Each window has a fixed menu of commands below the title line.
Reprinted from Swinehart et al., ACM Trans. Program. Lang. Syst. 8, 4 (Oct.), 452.

does not have to rewrite the standard functions, such as menus. A problem

with toolkits is that the styles of interaction are limited to those provided. For

example, it is diflicult to create a single slider that contains two indicators,

which might be useful to input the upper and lower bounds of a range.

Additionally, the toolkits themselves are often expensive to create: “The

primitives never seem complex in principle, but the programs that implement

them are surprisingly intricate” [Cardelli and Pike 1985, p, 199]. Another

problem with toolkits is that they are often difficult to use since they may

contain hundreds of procedures, and it is often not clear how to use the

procedures to create a desired interface. For example, the documentation for

the Macintosh Toolbox now covers six books, of which about 1/3 is related to

user interface programming,

As with the graphics package, the toolkit can be implemented either using

or being used by the windowing system (see Figure 3). Early systems pro-

vided only minimal widgets (e.g., just a menu), and expected applications to

provide others. In the Macintosh, the toolkit is at a low level, and the window

manager user interface is built using it. The advantage of this is that the

window manager can then use the same sophisticated toolkit routines for its

user interface. When the X system was being developed, the developers could

not agree on a single toolkit, so they left the toolkit to be on top of the

windowing system. In X, programmers can use a variety of toolkits (for
example, the xt [McCormack and Asente 1988], InterViews [Linton et al.

1989], Garnet [Myers et al. 1990], or tk [Ousterhout 1991] toolkits can be

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

78 . Brad A. Myers

Fig. 6, Some of the widgets with a Motif look and feel provided by the Garnet toolkit,

used on top of X), but the window manager must usually implement its user

interface from scratch.

Because the designers of X could not agree on a single look-and-feel, they

created an intrinsic layer on which to build different widget sets, which they

called xt [McCormack and Asente 1988]. This layer provides the common

services, such as techniques for object-oriented programming and layout

control. The widget set layer is the collection of widgets that is implemented

using the intrinsic. Multiple widget sets with different looks and feels can be

implemented on top of the same intrinsic layer (Figure 7(a)), or else the
same look-and-feel can be implemented on top of different intrinsic (Figure

7(b)). Recently, Sun announced that it was phasing out OpenLook, which

means that X and xt will be standardized on the Motif widget set.

6.1 Toolkit Intrinsic

Toolkits come in two basic varieties. The most conventional is simply a

collection of procedures that can be called by application programs. Examples

of this style include the SunTools toolkit for the Sun Microsystems SunView

ACM TransactIons on Computer-Human Interaction, Vol. 2, No. 1, March 1995

User Interface Software Tools . 79

I Xt Intrinsic I
I I

(a)

Eotif

Xt E!2!!41e!!l
@)

Fig. 7. (a) At least three different widget sets that have different looks and feels have been

implemented on top of the xt intrinsic. (b) The Motif look and feel has been implemented on at

least three different intrinsic.

windowing system and the Macintosh Toolbox [Apple Computer 1985]. The

other variety uses an object-oriented programming style which makes it

easier for the designer to customize the interaction techniques. Examples

include Smalltalk, Andrew, Garnet, InterViews, and Xt.

The advantages of using object-oriented intrinsic are (1) that it is a

natural way to think about widgets (the menus and buttons on the screen

seem like objects), (2) the widget objects can handle some of the chores that

otherwise would be left to the programmer (such as refresh), and (3) it is

easier to create custom widgets (by subclassing an existing widget). The

advantage of the older, procedural style is that it is easier to implement; no

special object-oriented system is needed, and it is easier to interface to

multiple programming languages.

To implement the objects, the toolkit might invent its own object system, as

was done with Xt, Andrew, and Garnet, or it might use an existing object

system, as was done in InterViews [Linton et al. 1989] which uses C ++,

NeXTStep (NeXT, Inc.) which uses Objective-C, and Rendezvous [Hill et al.

1993] which uses CLOS (the standard Common Lisp Object System).

The usual way that object-oriented toolkits interface with application

programs is through the use of call-back procedures. These are procedures

defined by the application programmer that are called when a widget is

operated by the user. For example, the programmer might supply a procedure

to be called when the user selects a menu item. Experience has shown that

real interfaces contain often hundreds of call-backs, which makes the code

harder to modify and maintain [Myers and Rosson 1992]. Additionally,

different toolkits, even when implemented on the same intrinsic like Motif

and OpenLook, have different call-back protocols. This means that code for

one toolkit is difficult to port to a different toolkit. Therefore, research is

being directed at reducing the number of call-backs in user interface software

[Myers 1991a].

Some research toolkits have added novel things to the toolkit intrinsic. For

example, Garnet [Myers et al. 1990], Rendezvous [Hill 1993], and Bramble

[Gleicher 19931 allow the objects to be connected using constraints, which are
relationships that are declared once and then maintained automatically by

the system. For example, the designer can specify that the color of a rectangle

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

80 . Brad A. Myers

is constrained to be the value of a slider, and then the system will automati-

cally update the rectangle if the user moves the slider.

6.2 Widget Set

Typically, the intrinsic layer is look-and-feel independent, which means that

the widgets built on top of it can have any desired appearance and behavior.

However, a particular widget set must pick a look-and-feel. The video All the

Widgets shows many examples of widgets that have been designed over the

years [Myers 1990b]. For example, it shows 35 different kinds of menus. Like

window manager user interfaces, the widgets’ look-and-feel can be copy-

righted and patented [Samuelson 1993].

As was mentioned above, different widget sets (with different looks and

feels) can be implemented on top of the same intrinsic. Also, the same

look-and-feel can be implemented on top of different intrinsic. For example,

there are Motif look-and-feel widgets on top of the xt, InterViews, and Garnet

intrinsic (Figure 7(b)). Although all look and operate the same (so would be

indistinguishable to the user), they are implemented quite differently, and

have completely different procedural interfaces for the programmer.

6.3 Specialized Toolkits

A number of toolkits have been developed to support specific kinds of applica-

tions or specific classes of programmers. For example, the SUIT system

[Pausch et al. 1992] (which contains a toolkit and an interface builder), is

specifically designed to be easy to learn and is aimed at classroom instruc-

tion. Garnet [Myers et al. 1990] provides high-level support for graphical,

direct-manipulation interfaces, and includes a toolkit, interface builder, and

other high-level tools. Rendezvous [Hill et al. 1993] is designed to make it

easier to create applications that support multiple users on multiple ma-

chines operating synchronously. Whereas most toolkits only provide 2D inter-

action techniques, the Brown Animation Generation System [Zeleznik et al.

1991] and Silicon Graphics’ Inventor toolkit [Strauss and Carey 1992;

Wernecke 1994] provide preprogrammed 3D widgets and a framework for

creating others. The Ttoolkit [Guimaraes et al. 1992] provides built-in primi-

tives for controlling the timing of an interface, which is important for

supporting multimedia, such as video. Special support for animations has

been added to Artkit, including motion blur, timing, and curved trajectories

[Hudson and Stasko 1993].

Tk [Ousterhout 1991] is a popular toolkit for the X window system because
it uses an interpretive language called tcl which makes it possible to change

the user interface dynamically. Tcl also supports the Unix style of program-

ming where many small programs are glued together.

7. VIRTUAL TOOLKITS

Although there are many small differences among the various toolkits, much

remains the same. For example, all have some type of menu, button, scroll

bar, text input field, etc. Although there are fewer windowing systems and

ACM Transactions on Computer-Human InteractIon, Vol. 2, No. 1, March 1995,

User Interface Software Tools . 81

toolkits than there were five years ago, people are still finding that they must

do a lot of work to convert their software from Motif to OpenLook to the

Macintosh and to Microsoft Windows.

Therefore, a number of systems have been developed that try to hide the

differences among the various toolkits, by providing virtual widgets which

can be mapped into the widgets of each toolkit. Another name for these tools

is cross-platform development systems. The programmer writes the code once

using the virtual toolkit, and the code will run without change on different

platforms and still look like it was designed with that platform’s widgets. For

example, the virtual toolkit might provide a single menu routine, which

always has the same programmer interface, but connects to a Motif menu,

Macintosh menu, or a Windows menu, depending on which machine the

application is run on. A recent report [Chimera 1993] compares a number of

virtual toolkits.

There are two styles of virtual toolkits. In one, the virtual toolkit links to

the different actual toolkits on the host machine. For example, XVT provides

a C or C ++ interface that links to the actual Motif, OpenLook, Macintosh,

MS-Windows, and OS/2-PM toolkits (and also character terminals) and

hides their differences. The second style of virtual toolkit reimplements the

widgets in each style. For example, Galaxy by Visix Software Inc. and Open

Interface by Neuron Data provide libraries of widgets that look like those on

the various platforms. The advantage of the first style is that the user

interface is more likely to be look-and-feel conformant (since it uses the real

widgets). The disadvantages are that the virtual toolkit must still provide an

interface to the graphical drawing primitives on the platforms. Furthermore,

they tend to provide functions that only appear in all toolkits. Many of the

virtual toolkits that take the second approach, for example Galaxy, provide a

sophisticated graphics package and complete sets of widgets on all platforms.

However, with the second approach, there must always be a large run-time

library, since in addition to the built-in widgets that are native to the

machine, there is the reimplementation of these same widgets in the virtual

toolkit library.

All of the toolkits that work on multiple platforms can be considered virtual

toolkits of the second type. For example, SUIT [Pausch et al. 1992] works on

X, Macintosh, and Windows, and Garnet [Myers et al. 1990] works on X and

the Macintosh. However, these use the same look-and-feel on all platforms

(and therefore do not look the same as the other applications on that
platform), so they are not classified as virtual toolkits.

8, HIGHER-LEVEL TOOLS

Since programming at the toolkit level is quite difficult, there is a tremen-

dous interest in higher-level tools that will make the user interface software

production process easier. These are discussed next.

8.1 Phases

Many higher-level tools have components that operate at different times. The

design-time component helps the user interface designer design the user

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

82 . Brad A. Myers

interface. For example, this might be a graphical editor which can lay out the

interface, or a compiler to process a user interface specification language. The

next phase is when the end-user is using the program. Here, the run-time

component of the tool is used. This includes usually a toolkit, but may also

include additional software specifically for the tool. Since the run-time compo-

nent is “managing” the user interface, the term User Interface Management

System seems appropriate for tools with a significant run-time component.

There may also be an after-run-time component that helps with the evalua-

tion and debugging of the user interface. Unfortunately, very few user

interface tools have an after-run-time component. This is partially because

tools that have tried, such as MIKE [Olsen and Halversen 1988], discovered

that there are very few metrics that can be applied by computers. A new

generation of tools are trying to evaluate how people will interact with

interfaces by creating cognitive models automatically from high-level descrip-

tions of the user interface. For example, USAGE creates an NGOMSL cogni-

tive model from a UIDE user interface specification [Byrne et al. 1994].

8.2 Specification Styles

High-level user interface tools come in a large variety of forms. One impor-

tant way that they can be classified is by how the designer specifies what the

interface should be. As shown in Figure 8, some tools require the programmer

to program in a special-purpose language. Some provide an application

framework to guide the programming. Some automatically generate the

interface from a high-level model or specification, and others allow the

interface to be designed interactively. Each of these types is discussed next.

Of course, some tools use different techniques for specifying different parts of

the user interface. These are classified by their predominant or most interest-

ing feature.

8.2.1 Language Based. With most of the older user interface tools, the

designer specified the user interface in a special-purpose language. This

language can take many forms, including context-free grammars, state tran-

sition diagrams, declarative languages, event languages, etc. The language is

usually used to specify the syntax of the user interface, i.e., the legal

sequences of input and output actions. This is sometimes called the “dialog.”

Green [1986] provides an extensive comparison of grammars, state transition

diagrams, and event languages, and Olsen [1992] surveys various UIMS

techniques.

8.2.1.1 State Transition Networks. Since many parts of user interfaces

involve handling a sequence of input events, it is natural to think of using a

state transition network to code the interface. A transition network consists

of a set of states, with arcs out of each state labeled with the input tokens

that will cause a transition to the state at the other end of the arc. In addition

to input tokens, calls to application procedures and the output to display can

also be put on the arcs in some systems. Newman [1968] implemented a

simple tool using finite-state machines which handled textual input. This was

ACM Transactions on Computer-Human InteractIon, Vol. 2, No. 1, March 1995

User Interface Software Tools . 83

.
Specification Format Examples Section

.
Lunguage Based 8.2,1

. .

State Transition Networks VAPS 8.2.1.1

Context-Free Grammars YAW 8.2.1.2
LEX
Syngraph

...
Event Languages ALGAE 8.2.1.3

Sassafras
HyperTalk

Declarative Languages Cousin 8.2.1.4
Open Dialog
Motif UIL

.-
Constraint Languages Thinglab 8.2.1.5

C32
...

Screen Scrapers Easel 8.2.1.6
....

Database Interfaces Oracle 8.2.1.7
..

Visual Programming LabView 8.2.1.8
Prograpb
Visual Basic

Application Frameworks MacApp 8.2.2
Unidraw

Model-Based Generation MIKE 8.2.3

UIDE
ITS
Humanoid

.-
Interactive Graphical SpecLjication 8.2.4

Prototypes Bricklin’s Demo 8.2.4.1
Director
lIyperCard

. ---

Cards Menolay 8.2.4.2
HyperCard

. .

Interface Builders DialogEditor 8.2.4.3
NeXT 1nterface Builder
Prototype
U1Mx

...... ...-
Data Visualization Tools DataViews 8.2.4.4

.
Graphical Editors Peridot 8.2.4.5

Lapidary
Marqoise

Fig. 8. Ways to specify the user interface, some tools that use the technique, and the section of
this article that discusses the technique.

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

84 . Brad A. Myers

apparently the first user interface tool. Many of the assumptions and tech-

niques used in modern systems were present in Newman’s: different lan-

guages for defining the user interface and the semantics (the semantic

routines were coded in a normal programming language), a table-driven

syntax analyzer, and device independence.

State diagram tools are most useful for creating user interfaces where the

user interface has a large number of modes (each state is really a mode). For

example, state diagrams are useful for describing the operation of low-level

widgets (e.g., how a menu or scroll bar works), or the overall global flow of an

application (e.g., this command will pop-up a dialog box, from which you can

get to these two dialog boxes, and then to this other window, etc.). However,

most highly interactive systems attempt to be mostly “mode-free,” which

means that at each point, the user has a wide variety of choices of what to do.
This requires a large number of arcs out of each state, so state diagram tools

have not been successful for these interfaces. Additionally, state diagrams

cannot handle interfaces where the user can operate on multiple objects at

the same time. Another problem is that they can be very confusing for large

interfaces, since they get to be a “maze of wires,” and off-page (or off-screen)

arcs can be hard to follow.

Recognizing these problems, but still trying to retain the perspicuousness

of state transition diagrams, Jacob [1986] invented a new formalism, which is

a combination of state diagrams with a form of event languages (see Section

8.2. 1.3). There can be multiple diagrams active at the same time, and flow of

control transfers from one to another in a coroutine fashion. The system can

create various forms of direct-manipulation interfaces. VAPS is a commercial

system by Virtual Prototypes Inc. that uses the state transition model, and it

eliminates the maze-of-wires problem by providing a spreadsheet-like table in

which the states, events, and actions are specified. Transition networks have

been thoroughly researched, but have not proven particularly successful or

useful either as a research or commercial approach.

8.2.1.2 Context-Free Grammars. Many grammar-based systems are based

on parser generators used in compiler development. For example, the de-

signer might specify the user interface syntax using some form of BNF.

Examples of grammar-based systems are Syngraph [Olsen and Dempsey

1983] and parsers built with YACC and LEX in Unix.

Grammar-based tools, like state diagram tools, are not appropriate for

specifying highly interactive interfaces, since they are oriented to batch

processing of strings with a complex syntactic structure. These systems are

best for textual command languages, and have been mostly abandoned for

user interfaces by researchers and commercial developers.

8.2.1.3 Event Languages. With event languages, the input tokens are

considered to be “events” that are sent to individual event handlers. Each

handler will have a condition clause that determines what types of events it

will handle, and when it is active. The body of the handler can cause output

events, change the internal state of the system (which might enable other

event handlers), or call application routines.

ACM Transactions on Computer-Human Interaction, Vol 2, No. 1, March 1995.

User Interface Software Tools . 85

The ALGAE system [Flecchia and Bergeron 1987] uses an event language

which is an extension of Pascal. The user interface is programmed as a set of

small event handlers, which ALGAE compiles into conventional code.

Sassafras [Hill 1986], uses a similar idea, but with an entirely different

syntax. Sassafras also adds local variables called “flags” to help specify the

flow of control. As described in Section 8.2.4.2, the HyperTalk language that

is part of HyperCard for the Apple Macintosh can also be considered an event

language.

The advantages of event languages are that they can handle multiple input

devices active at the same time, and it is straightforward to support non-

modal interfaces, where the user can operate on any widget or object. The

main disadvantage is that it can be very difficult to create correct code, since

the flow of control is not localized, and small changes in one part can affect

many different pieces of the program. It is also typically difficult for the

designer to understand the code once it reaches a nontrivial size. However,

the success of HyperTalk and similar tools shows that this approach is

appropriate for small to medium-size programs.

8.2.1.4 Declarative Languages. Another approach is to try to define a
language that is declarative (stating what should happen) rather than proce-

dural (how to make it happen). Cousin [Hayes et al. 1985] and HP/Apollo’s

Open-Dialogue [Schulert et al. 1985] both allow the designer to specify user

interfaces in this manner. The user interfaces supported are basically forms,

where fields can be text which is typed by the user, or options selected using

menus or buttons. There are also graphic output areas that the application

can use in whatever manner desired. The application program is connected to

the user interface through “variables” which can be set and accessed by both.

As researchers have extended this idea to support more sophisticated interac-

tions, the specification has grown into full application models, and newer

systems are described in Section 8.2.3.

Another type of declarative language is the layout description languages

that come with many toolkits. For example, Motif’s User Interface Language

(UIL) allows the layout of widgets to be defined. Since the UIL is interpreted
when an application starts, users can (in theory) edit the UIL code to

customize the interface. UIL is not a complete language, however, in the

sense that the designer must still write C code for many parts of the

interface, including any areas containing dynamic graphics and any widgets

that change.

The advantage of using declarative languages is that the user interface

designer does not have to worry about the time sequence of events, and can

concentrate on the information that needs to be passed back and forth. The

disadvantage is that only certain types of interfaces can be provided this way,

and the rest must be programmed by hand in the “graphic areas” provided to

application programs. The kinds of interactions available are preprogrammed

and fixed. In particular, these systems provide no support for such things as

dragging graphical objects, rubber-band lines, drawing new graphical objects,

or even changing dynamically the items in a menu based on the application

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

86 . Brad A, Myers

mode or context. However, these languages are now proving successful as

intermediate languages describing the layout of widgets (such as UIL) that

are generated by interactive tools. They were also an important intermediate

research step on the way to today’s model-based approaches (Section 8.2.3).

8.2.1.5 Constraint Languages. A number of user interface tools allow the

programmer to use constraints to define the user interface [Borning and

Duisberg 1986]. Early constraint systems include Sketchpad [Sutherland

1963] which pioneered the use of graphical constraints in a drawing editor,

and Thinglab [Borning 1981] which used constraints for graphical simulation.

Subsequently, Thinglab was extended to aid in the generation of user inter-

faces [Borning and Duisberg 1986].

Section 6.1 mentioned the use of constraints as part of the intrinsic of a

toolkit. A number of research toolkits now supply constraints as an integral

part of the object system (e.g., Garnet [Myers et al. 1990]). Additionally, some

systems have provided higher-level interfaces to constraints. Graphical

Thinglab [Borning 1986] allows the designer to create constraints by wiring

icons together, and NoPump [Wilde and Lewis 1990], C32 [Myers 1991b], and

Penguims [Hudson 1993] allow constraints to be defined using spreadsheet-

Iike interfaces.

The advantage of constraints is that they are a natural way to express

many kinds of relationships that arise frequently in user interfaces, for

example, that lines should stay attached to boxes, that labels should stay

centered within boxes, etc. However, a disadvantage with constraints is that

they require a sophisticated run-time system to solve them efficiently. An-

other problem is that they can be hard to debug when specified incorrectly

since it can be difficult to trace the causes and consequences of values

changing. However, a growing number of research systems are using con-

straints, and it appears that modern constraint solvers and debugging tech-

niques may solve these problems; so constraints have a great potential to

simplify the programming task. As yet, there are no commercial user inter-

face tools using constraints.

8.2.1.6 Screen Scrapers. Some commercial tools are specialized to be
“front-enders” or “screen scrapers”which provide a graphical user interface

to old programs without changing the existing application code. They do this

by providing an in-memory buffer that pretends to be the screen of an old

character terminal such as might be attached to an IBM mainframe. When

the mainframe application outputs to the buffer, a designer-written program

in a special programming language converts this into an update of a graphi-

cal widget. Similarly, when the user operates a widget, the script converts

this into the appropriate edits of the character buffer. The leading program of

this type is Easel, which also contains an interface builder for laying out the

widgets.

8.2.1.7 Database Interfaces. A very important class of commercial tools

support form-based or GUI-based access to databases. Major database ven-

dors such as Oracle provide tools which allow designers to define the user

ACM Transactions on Computer-Human Interaction, Vol 2, No. 1, March 1995

User Interface Software Tools . 87

interface for accessing and setting data. Often these tools include interactive

form editors (which are essentially interface builders) and special database

languages. Fourth-generation languages (4GLs), that support defining the

interactive forms for accessing and entering data, fall into this category also.

8.2.1.8 Visual Programming. “Visual programs” use graphics and two-di-

mensional (or more) layout as part of the program specification [Myers

1990c]. Many different approaches to using visual programming to specify

user interfaces have been investigated. Most systems that support state

transition networks (Section 8.2. 1,1) use a visual representation. Another

popular technique is to use dataflow languages. In these, icons represent

processing steps, and the data flow along the connecting wires. The user

interface is usually constructed directly by laying out prebuilt widgets, in the

style of interface builders (Section 8.2.4.3). Examples of visual programming

systems for creating user interfaces include Labview by National Instru-

ments which is specialized for controlling laboratory instruments, and Pro-

Graph. Using a visual language seems to make it easier for novice program-

mers, but large programs still suffer from the familiar “maze-of-wires” prob-

lem. Other papers (e.g., Myers [1990c]) have analyzed the strengths and

weaknesses of visual programming in detail.

Another popular language is Visual Basic from Microsoft. Although this is

more of a structure editor for Basic combined with an interface builder, and

therefore does not really count as a visual language, it does make the

construction of user interface software easier. Microsoft is pushing Visual

Basic as the extension language that people will use to customize and connect

Windows-based applications.

8.2.1.9 Summary of Language Approaches. In summary, there have been

many different types of languages that have been designed for specifying user

interfaces. One problem with all of these is that they can only be used by

professional programmers. Some programmers have objected to the require-

ment for learning a new language for programming just the user interface

portion [Olsen 1987]. This has been confirmed by market research [X Busi-

ness Group 1994, p. 29]. Furthermore, it seems more natural to define the

graphical part of a user interface using a graphical editor (see Section 8.2.4).

However, it is clear that for the foreseeable future, much of the user interface

will still need to be created by writing programs, so it is appropriate to

continue investigations into the best language to use for this. Indeed, a new

book is entirely devoted to investigating the languages for programming user

int&faces [Myers 1992a].

8.2.2 Application Frameworks. After the Macintosh Toolbox had been

available for a little while, Apple discovered that programmers had a difficult

time figuring out how to call the various toolkit functions, and how to ensure

that the resulting interface met the Apple guidelines. Therefore, they created

a software system that provides an overall application framework to guide
programmers. This is called MacApp [Schmucker 1986; Wilson 1990] and

uses the object-oriented language Object Pascal. Classes are provided for the

ACM Transactions on Computer-Human Interaction, Vol. 2, No 1, March 1995.

88 . Brad A. Myers

important parts of an application, such as the main windows, the commands,

etc,, and the programmer specializes these classes to provide the application-

specific details, such as what is actually drawn in the windows and which

commands are provided. MacApp has been very successful at simplifying the

writing of Macintosh applications.

Unidraw [Vlissides and Linton 1990] uses a similar approach, but it is

more specialized for graphical editors. This means that it can provide even

more support. Unidraw uses the C ++ object-oriented language and is part of

the InterViews system [Linton et al. 1989]. Unidraw has been used to create

various drawing and CAD programs, and a user interface editor [Vlissides

and Tang 1991]. The Garnet framework is also aimed at graphical applica-

tions, but due to its graphical data model, many of the built-in routines can

be used without change (the programmer does not usually need to write

methods for subclasses) [Myers et al. 1992b]. The ACE system from HP

provides an interactive editor that allows some of the properties of objects to

be specified, but most of the application-specific behavior must still be

programmed [Johnson et al. 1993]. Even more specialized are various graph

programs, such as Edge [Newbery 1988] and TGE [Karrer and Scacchi 1990].

These provide a framework in which the designer can create programs that

display their data as trees or graphs. Typically, the programmer specializes

the node and arc classes, and specifies some of the commands, but the

framework handles layout and the overall control.

An emerging popular approach aims to replace today’s large, monolithic

applications with smaller components that attach together. For example, you

might buy a separate text editor, ruler, paragraph formatter, spell checker,

and drawing program, and have them all work together seamlessly. This

approach was invented by the Andrew environment [Palay et al. 1988] which

provides an object-oriented document model that supports the embedding of

different kinds of data inside other documents. These “insets” are unlike data

that is cut and pasted in systems like the Macintosh because they bring along

the programs that edit them, and therefore can always be edited in place.

Furthermore, the container document does not need to know how to display

or print the inset data since the original program that created it is always

available. The designer creating a new inset writes subclasses that adhere to

a standard protocol so the system knows how to pass input events to the

appropriate editor, The next generation of operating systems will use this

approach extensively: it is the foundation for Microsoft’s OLE and Apple’s

OpenDoc.

All of these frameworks require the designer to write code, typically by

creating application-specific subclasses of the standard classes provided as

part of the framework.

Another class of systems that might be considered “frameworks” helps

create user interfaces that are composed of a series of “cards,” such as

HyperCard from Apple. These systems are discussed in Section 8.2.4.2 be-

cause their primary interface to the designer is graphical.

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

User Interface Software Tools . 89

8.2.3 Model-Based Automatic Generation. A problem with all of the lan-

guage-based tools is that the designer must specify a great deal about the

placement, format, and design of the user interfaces. To solve this problem,

some tools use automatic generation so that the tool makes many of these

choices from a much higher-level specification. Many of these tools, including

Mickey [Olsen 1989], Jade [Vander Zanden and Myers 1990], Chisel [Singh

and Green 1989], and DON [Kim and Foley 1993] have concentrated on

creating menus and dialog boxes. Chisel and Jade allow the designer to use a

graphical editor to edit the generated interface if it is not good enough. DON

has the most sophisticated layout mechanisms and takes into account the

desired window size, balance, columness, symmetry, grouping, etc. Ch-eating

dialog boxes automatically has been very thoroughly researched, but there

still are no commercial tools that do this.

Another approach is to try to create a user interface based on a list of the

application procedures. MIlK13 [Olsen 1986] creates an initial interface that is

menu-oriented and rather verbose, but the designer can change the menu

structure, use icons for some commands, and even make some commands

operate by direct manipulation. The designer uses a graphical editor, like

those described in Section 8.2.4, to specify these changes.

UIDE (the User Interface Design Environment) [Sukaviriya et al. 1993]

requires that the semantics of the application be defined in a special-purpose

language, and therefore might be included with the language-based tools

(section 8.2.1). It is placed here instead because the language is used
to describe the functions that the application supports and not the desired

interface. UIDE is classified as a “model-based” approach because the specifi-

cation serves as a high-level, sophisticated model of the application seman-

tics. In UIDE, the description includes pre- and postconditions of the opera-

tions, and the system uses these to reason about the operations, and to

generate an interface automatically. One interesting part of this system is

that the user interface designer can apply “transformations” to the interface.

These change the interface in various ways. For example, one transformation

changes the interface to have a currently selected object instead of requiring

an object to be selected for each operation. UIDE applies the transformations

and insures that the resulting interface remains consistent. Another feature

of UIDE is that the pre- and postconditions are used to generate help

automatically [Sukaviriya and Foley 1990]. One direction of current research

is to make UIDE models easier to create by allowing users to demonstrate

some parts of the interface [Frank and Foley 19931.

Another model-based system is HUMANOID [Szekely et al. 1993] which

supports the modeling of the presentation, behavior, and dialogue of an

interface. The HUMANOID modeling language includes abstraction, composi-

tion, recursion, iteration, and conditional constructs to support sophisticated

interfaces. The HUMANOID system, which is built on top of the Garnet

toolkit [Myers et al. 1990], provides a number of interactive modeling tools to

help the designer specify the model. The developers of HUMANOID and

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

90 . Brad A. Myers

UIDE are collaborating on a new combined model called MASTERMIND that

integrates their approaches [Neches et al. 1993].

The ITS [Wiecha et al. 1990] system also uses rules to generate an

interface. lTS was used to create the visitor information system for the EXPO

1992 worlds fair in Seville, Spain. Unlike the other rule-based systems, the

designer using ITS is expected to write many of the rules, rather than just

writing a specification that the rules work on. In particular, the design

philosophy of ITS is that all design decisions should be codified as rules so

that they can be used by subsequent designers, which will hopefully mean

that interface designs will get easier and better as more rules are entered. As

a result, the designer should never use graphical editing to improve the

design, since then the system cannot capture the reason that the generated

design was not sufficient.

While the idea of having the user interface generated automatically is

appealing, this approach is still at the research level, because the user

interfaces that are generated are not good enough. A further problem is that

the specification languages can be quite hard to learn and use. Extensive

current research is addressing the problems of expanding the range of what

can be created automatically (to go beyond dialog boxes) and to make the

model-based approach easier to use.

8.2.4 Direct Graphical Specification. The tools described next all allow the

user interface to be defined, at least partially, by placing objects on the screen

using a pointing device. This is motivated by the observation that the visual

presentation of the user interface is of primary importance in graphical user

interfaces, and a graphical tool seems to be the most appropriate way to

specify the graphical appearance. Another advantage of this technique is that

it is usually much easier for the designer to use. Many of these systems can

be used by nonprogrammers. Therefore, psychologists, graphic designers, and

user interface specialists can more easily be involved in the user interface

design process when these tools are used.

These tools can be distinguished from those that use “visual programming”

(Section 8.2. 1.8) since with direct graphical specification, the actual user

interface (or a part of it) is drawn, rather than being generated indirectly by a

visual program. Thus, direct graphical specification tools have been called

direct-manipulation programming since the user is directly manipulating

the user interface widgets and other elements.

The tools that support graphical specification can be classified into four

categories: prototyping tools, those that support a sequence of cards, interface

buildem, and editors for application-specific graphics.

8.2.4.1 Prototyping Tools. The goal of prototyping tools is to allow the

designer to niock up quickly some examples of what the screens in the

program will look like. Often, these tools cannot be used to create the real

user interface of the program; they just show how some aspects will look. This

is the chief factor that distinguishes them from other high-level tools. Many

parts of the interface may not be operable, and some of the things that look

like widgets may just be static pictures, In most prototypes, no real toolkit

ACM Tramactlons on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

User Interface Software Tools . 91

widgets are used, which means that the designer has to draw simulations

that look like the widgets that will appear in the interface. The normal use is

that the designer would spend a few days or weeks trying out different

designs with the tool, and then completely reimplement the final design in a

separate system. Most prototyping tools can be used without programming,

so they can, for example, be used by graphic designers.

Note that this use of the term “prototyping” is different from the general

phrase “rapid prototyping,” which has become a marketing buzz-word. Adver-

tisements for just about all user interface tools claim that they support “rapid

prototyping,” by which they mean that the tool helps create the user interface

software quicker. The term “prototyping” is being used in this article in a

much more specific manner.

Probably the first prototyping tool was Dan Bricklin’s Demo, by Sage

Software Inc. This is a program for an IBM PC that allows the designer to

create sample screens composed of characters and “character graphics” (where

the fixed-size character cells can contain a graphic like a horizontal, vertical,

or diagonal line). The designer can easily create the various screens for the

application. It is also relatively easy to specify the actions (mouse or key-

board) that cause transitions from one screen to another. However, it is

difficult to define other behaviors. In general, there maybe some support for

type-in fields and menus in prototyping tools, but there is little ability to

process or test the results.

For graphical user interfaces, designers often use tools like Director, by

MacroMedia, for the Macintosh which is actually an animation tool. The

designer can draw example screens, and then specify that when the mouse is

pressed in a particular place, an animation should start or a different screen

should be displayed. Components of the picture can be reused in different

screens, but again the ability to show behavior is limited. HyperCard for the

Macintosh is also often used as a prototyping tool.

The primary disadvantage of these prototyping tools is that they cannot

create the actual code for the user interface. Therefore, the interfaces must be

recoded after prototyping. There is also the risk that the programmers who

implement the real user interface will ignore the prototype. Therefore, a new

research tool is trying to provide a quick sketching interface and then convert

the sketches into actual widgets [Landay and Myers 1995].

8.2.4.2 Cards. Many graphical programs are limited to user interfaces

that can be presented as a sequence of mostly static pages, sometimes called

“frames,” “cards,” or “forms.” Each page contains a set of widgets, some of

which cause transfer to other pages. There is usually a fixed set of widgets to

choose from, which were coded by hand.

An early example of this is Menulay [Buxton et al. 1983], which allows the

designer to place text, graphical potentiometers, iconic pictures, and light

buttons on the screen and see exactly what the user will see when the

application is run. The designer does not need to be a programmer to use

Menulay. Trillium [Henderson 1986], which is aimed at designing the user

interface panels for photocopiers, is very similar to Menulay. One strong

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

92 . Brad A. Myers

advantage that Trillium has over Menulay is that the cards can be executed

immediately as they are designed since the specification is interpreted rather

than compiled. Trillium also separates the behavior of interactions from the

graphic presentation and allows the designer to change the graphics (while

keeping the same behavior) without programming. One weakness is that it

has little support for frame-to-frame transitions, since this rarely is necessary

for photocopiers.

Probably, the most famous example of a card-based system is HyperCard

from Apple. There are now many similar programs, such as GUIDE by Owl

International, Inc., Spinnaker Plus by Spinnaker Software, and Tool Book by

Asymetrix Corp. In all of these, the designer can easily create cards contain-

ing text fields, buttons, etc., along with various graphic decorations. The

buttons can transfer to other cards. These programs provide a scripting

language to provide more flexibility for buttons. HyperCard’s scripting lan-

guage is called HyperTalk, and as mentioned in Section 8.2.1.3, is really an

event language, since the programmer writes short pieces of code that are

executed when input events occur.

8.2.4.3 Interface Builders. An interface builder allows the designer to
create dialog boxes, menus, and windows that are to be part of a larger user

interface. These are also called Interface Development Tools. Interface builders

allow the designer to select from a predefined library of widgets, and place

them on the screen using a mouse. Other properties of the widgets can be set

using property sheets. Usually, there is also some support for sequencing,

such as bringing up subdialogs when a particular button is hit. The Steamer

project at BBN demonstrated many of the ideas later incorporated into

interface builders and was probably the first object-oriented graphics system

[Stevens et al. 1983]. Other examples of research interface builders are

DialogEditor [Cardelli 1988], vu [Singh and Green 1988], and Gilt [Myers

1991a]. There are literally hundreds of commercial interface builders. Just a

few examples are the NeXT Interface Builder, Prototype for the Macintosh

by Smethers Barnes, WindowsMAKER for Microsoft Windows on the PC by

Blue Sky Software Corp., UIMX for X Windows and Motif by Visual Edge

Software Ltd., and devGuide from Sun Microsystems for OpenLook. Many of

the tools discussed above, such as the virtual toolkits, visual languages, and

application frameworks, also contain interface builders.

Interface builders use the actual widgets from a toolkit, so they can be used

to build parts of real applications. Most will generate C code templates that

can be compiled along with the application code. Others generate a descrip-

tion of the interface in a language that can be read at run-time. For example,

UIMX generates a UIL description. It is usually important that the program-

mer not edit the output of the tools (such as the generated C code), or else the

tool can no longer be used for later modifications.

Although interface builders make laying out the dialog boxes and menus

easier, this is only part of the user interface design problem. These tools

provide little guidance toward creating good user interfaces, since they give

designers significant freedom. Another problem is that for any kind of pro-

ACM Transactions on Computer-Human Interaction, Vol. 2, No, 1, March 1995,

User Interface Software Tools . 93

gram that has a graphics area (such as drawing programs, CAD, visual

language editors, etc.), interface builders do not help with the contents of the

graphics pane. Also, they cannot handle widgets that change dynamically.

For example if the contents of a menu or the layout of a dialog box changes

based on program state, this must be programmed by writing code. To help

with this part of the problem, some interface builders, like UIMX, provide a C

code interpreter.

8.2.4.4 Data Visualization Tools. An important commercial category of

tools are dynamic data visualization systems. These tools, which tend to be

quite expensive, emphasize the display of dynamically changing data on a

computer, and are used as front ends for simulations, process control, system

monitoring, network management, and data analysis. The interface to the
designer is usually quite similar to an interface builder, with a palette of

gauges, graphers, knobs, and switches that can be placed interactively.
However, these controls usually are not from a toolkit and are supplied by the

tool. Example tools in this category include DataViews by V. I. Corp., SL-GMS

by SL Corp., and VAPS by Virtual Prototypes Inc.

8.2.4.5 Editors for Application-Specific Graphics. When an application has

custom graphics, it would be useful if the designer could draw pictures of

what the graphics should look like rather than having to write code for this.

The problem is that the graphic objects usually need to change at run-time,

based on the actual data and user’s actions. Therefore, the designer can only

draw an example of the desired display, which will be modified at run-time,

and so these tools are called “demonstrational programmin~ [Myers 1992bl.

This distinguishes these programs from the graphical tools of the previous

three sections, where the full picture can be specified at design time. As a

result of the generalization task of converting the example objects into

parameterized prototypes that can change at run-time, most of these systems

are still in the research phase.

Peridot [Myers 1988b] allows new, custom widgets to be created. The

primitives that the designer manipulates with the mouse are rectangles,

circles, text, and lines. The system generalizes from the designer’s actions to

create parameterized, object-oriented procedures like those that might be

found in toolkits. Experiments showed that Peridot can be used by nonpro-

grammers. Lapidary [Myers et al. 1989] extends the ideas of Peridot to allow

general application-specific objects to be drawn. For example, the designer

can draw the nodes and arcs for a graph program. The DEMO system [Fisher

et al. 1992] allows some dynamic, run-time properties of the objects to be

demonstrated, such as how objects are created. The Marquise tool [Myers et

al. 1993] allows the designer to demonstrate when various behaviors should

happen, and supports palettes which cmtd the beha~ors. Research cOntin-
ues on making these ideas practical.

8.3 Specialized Tools

For some application domains, there are customized tools that provide signifi-

cant high-level support. These tend to be quite expensive, however (i.e.,

ACM Transactions on Computer-Human Interaction, Vol. 2, No 1, March 1995.

94 . Brad A. Myers

$20,000 to $50,000). For example, in the aeronautics and real-time control

areas, there are a number of high-level tools, including AutoCode by Inte-

grated Systems and InterMAPhics by Prior Data Sciences.

9. TECHNOLOGY TRANSFER

User interface tools are an area where research has had a tremendous impact

on the current practice of software development. Of course, window managers

and the resulting “GUI style” come from the seminal research at the Stanford

Research Institute, Xerox Palo Alto Research Center, and MIT in the 1970s.

Interface builders and “card” programs like HyperCard were invented in

research labs at BBN, the University of Toronto, Xerox PARC, and others.

Now, interface builders are at least a $100 million per year business and are

widely used for commercial software development. Event languages, as widely

used in HyperTalk and elsewhere, were first investigated in research labs.

The next generation of environments, like OLE and OpenDoc, will be based

on the component architecture which was developed in the Andrew environ-

ment from CMU. Thus, whereas some early UIMS approaches like transition

networks and grammars may not have been successful, overall, the user

interface tool research has changed the way that software is developed.

10. EVALUATING USER INTERFACE TOOLS

There are clearly a large number of approaches to how tools work, and there

are research and commercial tools that use each of the techniques. When

faced with a particular programming task, the designer might ask which tool

is the most appropriate. Different approaches are appropriate for different

kinds of tasks, and orthogonally, there are some dimensions that are useful

for evaluating all tools. An important point is that in today’s market, there is

probably a commercial higher-level tool appropriate for most tasks, so if you

are programming directly at the window manager or even toolkit layer, there

may be a tool that will save you much work.

10.1 Approaches

Using the commercial tools, if you are designing a command-line-style inter-

face, then a parser generator like YACC and Lex is appropriate. If you are

creating a graphical application, then you should definitely be using a toolkit

appropriate to your platform. If there is an application framework available,

it will probably be very helpful. For creating the dialog boxes and menus, an

interface builder is very useful, and generally easier to use than declarative

languages like UIL. If your application is entirely (o. mostly) pages of

information with some fields for the user to fill in, then the card tools might

be appropriate.

Among the approaches that are still in the research phase, constraints

seem quite appropriate for specifying graphical relationships; automatic gen-

eration may be useful for dialog boxes and menus; and graphical editors will

allow the graphical elements of the user interface to be drawn.

There is a big debate going on about the model-based and direct graphical

specification approaches [Sukaviriya et al. 1994; Wiecha et al. 1989]. The

ACM Transactions on Computer-HUman Interaction, Vol. 2, No. 1, March 1995.

User Interface Software Tools . 95

model-based tools provide a top-down (or “application-out”) approach where

the functions are specified first, whereas the graphical tools provide a bottom-

up (or “user-interface-in”) approach where the user interface is designed

before the functions. Furthermore, the automatic, model-based approaches

seem to provide too little flexibility to the designer, whereas the graphical

tools provide too much flexibility and not enough guidance. Some researchers

are trying to create systems that combine the approaches to try to achieve the

advantages of both [Frank and Foley 1993].

10.2 Dimensions

There are many dimensions along which you might evaluate user interface

tools. The importance given to these different factors will depend on the type

of application to be created, and the needs of the designers.

Depth. How much of the user interface does the tool cover? For example,

Interface Builders help with dialog boxes, but do not help with creating

interactive graphics. Does the tool help with the evaluation of the interfaces?

Breadth. How many different user interface styles are supported, or is the

resulting user interface limited to just one style, such as a sequence of cards?

If this is a higher-level tool, does it cover all the widgets in the underlying

toolkit? Can new interaction techniques and widgets be added if necessary?

Portability. Will the resulting user interface run on multiple platforms,

such as X, Macintosh, and Windows?

Ease of Use of Tools. How difficult are the tools to use? For toolkits and

most language-based higher-level tools, highly trained professional program-

mers are needed. For some graphical tools, even inexperienced end-users can

generate user interfaces. Also, since the designers are themselves users of the

tools, the conventional user interface principles can be used to evaluate the

quality of the tools’ own user interfaces.

Efficiency for Designers. How fast can designers create user interfaces

with the tool? This is often related to the quality of the user interface of the

tool.

Quality of Resulting Interfaces. Does the tool generate high-quality user

interfaces? Does the tool help the designer evaluate and improve the quality?

Many tools allow the designer to produce any interface desired, so they

provide no specific help in improving the quality of the user interfaces.

Performance of Resulting Interface. How fast does the resulting user

interface operate? Some tools interpret the specifications at run-time, or

provide many layers of software, which may make the resulting user inter-

face too slow on some target machines. Another consideration is the space

overhead since some tools require large libraries to be in memory at run-time.

Price. Some tools are provided free by research organizations, such as tk

from Berkeley and Garnet from CMU. Most personal computers and worksta-

ACM Transactions on Computer-Human Interaction, Vol 2, No, 1, March 1995.

96 . Brad A. Myers

tions today come with a free toolkit. Commercial higher-level tools can range

from $200 to $50,000, depending on their capabilities.

Robustness and Support. In one study, users of many of the commercial

tools complained about bugs even in the officially released version [Myers and

Rosson 1992], so checking for robustness is important. Since many of the tools

are quite hard to use, the level of training and support provided by the

vendor might be important.

Naturally, there are tradeoffs among these criteria. Generally, tools that

have the most power (depth and breadth) are more difficult to use. The tools

that are easiest to use might be most efficient for the designer, but not if they

cannot create the desired interfaces.

As tools become more widespread, reviews and evaluations of them are

beginning to appear in magazines such as Open Systems Today for Unix and

PC Magazine. Market research firms are writing reports evaluating various

tools [Depalma and Woodring 1993; X Business Group 1994]. Also, there are

a few formal studies of tools [Hix 1989].

11. RESEARCH ISSUES

Although there are many user interface tools, there are plenty of areas in

which further research is needed. A report prepared for an NSF study

discusses future research ideas for user interface tools at length [Olsen et al.

1993]. Here, a few of the important ones are summarized.

11.1 New Programming Languages

The built-in input/output primitives in today’s programming languages sup-

port a textual question-and-answer sty~e of user interface which is modal and

well known to be poor. Most of today’s tools use libraries and interactive

programs which are separate from programming languages. However, many

of the techniques, such as object-oriented programming, multiple processing,

and constraints, are best provided as part of the programming language.

Furthermore, an integrated environment, where the graphical parts of an

application can be specified graphically and the rest textually, would make

the generation of applications much easier. A new book discusses how pro-

gramming languages can be improved to provide better support for user

interface software [Myers 1992a].

11.2 increased Depth

Many researchers are trying to create tools that will cover more of the user

interface, such as application-specific graphics and behaviors. The challenge

here is to allow flexibility to application developers while still providing a

high level of support. Tools should also be able to support Help, Undo, and

Aborting of operations.

Today’s user interface tools mostly help with the generation of the code of

the interface, and assume that the fundamental user interface design is

complete. What are also needed are tools to help with the generation,

ACM Transactions on Computer-Human InteractIon, Vol. 2, No, 1, March 1995,

User Interface Software Tools . 97

specification, and analysis of the design of the interface [Landay and Myers

1995]. For example, an important first step in user interface design is task

analysis, where the designer identifies the particular tasks that the user will

need to perform. Research should be directed at creating tools to support

these methods and techniques. These might eventually be integrated with the

code generation tools, so that the information generated during early design

can be fed into automatic generation tools, possibly to produce an interface

directly from the early analyses. The information might also be used to

generate documentation and run-time help automatically.

Another approach is to allow the designer to specify the design in an

appropriate notation, and then provide tools to convert that notation into

interfaces. For example, the UAN [Hartson et al. 1990] is a notation for

expressing the user’s actions and the system’s responses.

Finally, much work is needed in ways for tools to help evaluate interface

designs. Initial attempts, such as in MIKE [Olsen and Halversen 1988], have

highlighted the need for better models and metrics against which to evaluate

the user interfaces. Research in this area is continuing by cognitive psycholo-

gists and other user interface researchers (e.g., Byrne et al. [1994]).

11.3 Increased Breadth

We can expect the user interfaces of tomorrow to be different from the

conventional window-and-mouse interfaces of today, and tools will have to

change to support the new styles. For example, most tools today only deal

with two-dimensional objects, but there is already a demand to provide 3D

visualizations and animations. New input devices and techniques will proba-

bly replace the conventional mouse and menu styles. For example, gesture

and handwriting recognition are appearing in mass-market commercial prod-

ucts, such as notepad computers and “personal digital assistants” like Apple’s

Newton (gesture recognition has actually been used since the 1970s in

commercial CAD tools). “Virtual reality” systems, where the computer cre-

ates an artificial world and allows the user to explore it, cannot be handled by

any of today’s tools. In these “non-WIMP applications (WIMP stands for

Windows, Icons, Menus, and Pointing devices), designers will also need better

control over the timing of the interface, to support animations and various

new media like video [Nielsen 1993]. Although a few tools are directed at

multiple-user applications, there are no direct graphical specification tools,

and the current tools are limited in the styles of applications they support.

A more immediate concern is for supporting interfaces that can be moved

from one natural language to another (like English to French). International-

izing an interface is much more difficult than simply translating the text

strings, and may include different number, date, and time formats, new input

methods, redesigned layouts, different color schemes, and new icons [Russo

and Boor 1993]. How can future tools help with this process?

11.4 End-User Programming and Customization

One of the most successful computer programs of all time is the spreadsheet.

The primary reason for its success is that end users can program (by writing

ACM Transactions on Computer-Human InteractIon, Vol. 2, No. 1, March 1995.

98 . Brad A. Myers

formulas and macros). However, end-user programming is rare in other

applications, and where it exists, usually requires learning conventional

programming. For example, AutoCAD provides Lisp for customization. More

effective mechanisms for users to customize existing applications and create

new ones are needed [Myers et al. 1992a]. However, these should not be built

into individual applications as is done today, since this means that the user

must learn a different programming technique for each application. Instead,

the facilities should be provided at the system level, and therefore should be

part of the underlying toolkit. Naturally, since this is aimed at users, it will

not be like programming in C, but rather at some higher level.

The X Business Group predicts that there will be an increased use of tools

by end-users, rather than professional software developers, which will pre-

sent enormous opportunities and challenges to tool creators.

There are many levels at which users might want to modify these “mallea-

ble interfaces”: simple changing of menus and properties, direct programming

of new functions like in spreadsheets, or connecting together prebuilt compo-

nents, as in the Andrew and OLE frameworks. Future UI tools should

support changes at all of these levels.

11.5 Application and UI Separation

One of the fundamental goals of user interface tools is to allow the better

modularization and separation of user interface code from application code.

However, a recent survey reported that modern toolkits actually make this

separation more difficult, due to the large number of call-back procedures

required [Myers and Rosson 1992]. Therefore, further research is needed into

ways to modularize the code better, and how tools can support this.

11.6 Tools for the Tools

It is very difficult to create the tools described in this article. Each one takes

an enormous effort. Therefore, work is needed in ways to make the tools

themselves easier to create. For example, the Garnet toolkit is exploring

mechanisms specifically designed to make high-level graphical tools easier to

create [Myers and Vander Zanden 1992]. The Unidraw framework has also

proven useful for creating interface builders [Vlissides and Tang 1991].

However, more work is needed.

12. CONCLUSIONS

The area of user interface tools is expanding rapidly. Five years ago, you

would have been hard-pressed to find any successful commercial higher-level

tools, but now there are over 100 different tools, and tools are turning into a

billion dollar business. Chances are that today, whatever your project is,

there is a tool that will help. Tools that are coming out of research labs are

covering increasingly more of the user interface task, are more effective at

helping the designer, and are creating better user interfaces. As more compa-

nies and researchers are attracted to this area, we can expect the pace of

innovation to continue to accelerate. There will be many exciting and useful

new tools available in the near future.

ACM Transactions on Computer-Human Interaction, Vol. 2, No 1, March 1995.

User Interface Software Tools . 99

REFERENCES

ADOBE SYSTEMS 1985. Postscript Language Reference Manual. Addison-Wesley, Reading, Mass.

APPLE COMPUTER 1985. Znside Macintosh. Addison-Wesley, Reading, Mass.

BLY, S. A. AND ROSENBERG, J. K. 1986. A comparison of tiled and overlapping windows. In

Human Factorsin Computing Systems, Proceedings SIGCHZ’86(Boston, Mass., Apr.) .ACM,
New York, 101-106.

BOOZALLEN AND HAMILTON 1992. NeXTStep vs. other development environments. Booz Allen

and Hamilton, Inc. Report available from NeXT, Inc.
BORNING, A. 1981. The programming language aspects of Thinglab. A constraint-oriented

simulation laboratory. ACM Z’rans. Program. Lang. Syst. 3, 4 (Oct.), 353–387.

BORNING, A. AND DUISBERG, R. 1986. Constraint-based tools for building user interfaces. ACM

Trans. Graph. 5, 4 (Oct.), 345-374.

BORNING, A. 1986. Defining constraints graphically. In Human Factors in Computing Sys-

tems, Proceedings SIGCHI’86. ACM, New York, 137-143.

BUXTON, W., LAMB, M. R., SHERMAN, D., AND SMITH, K. C. 1983. Towards a comprehensive user
interface management system. Comput. Graph. 17, 3, 35–42.

BYRNE, M. D., WOOD, S. D., SUKAWRIYA, P., FOLEY, J. D., AND KIERAS, D. E. 1994. Automating
interface evaluation. In Human Factors in Computing Systems, Proceedings SIGCHI’94.

ACM, New York, 232-237.

CARDELLI, L. 1988. Building user interfaces by direct manipulation. In ACM SIGGRAPH

Symposium on User Interface Software and Technology, Proceedings UIST’88 (Banff, Alberta,

Canada, Oct.). ACM, New York, 152-166.

CARDELLI, L. AND PIKE, R. 1985. Squeak: A language for communicating with mice. In SIG-

GRAPH ’85. Comput. Graph. 19, 3 (July), 199-204.

CHIMERA, R. 1993. Evaluation of platform independent user interface builders. Tech. Rep.
Working Paper 93-09, Human-Computer Interaction Laboratory, Univ. of Maryland.

DEPALMA,D. A. AND WOODRING, S. D. 1993. Client/server power tools futures. Softw. Strut.

Rep. 4, 1 (Apr.), 2–13. This is available only from Forrester Research, Cambridge, Mass.

FISHER, G. L., BUSSE, D. E., AND WOLBER, D. A. 1992. Adding rule-based reasoning to a

demonstrational interface builder. In ACM SIGGRAPH Symposium on User Interface Soft-

ware and Technology, Proceedings UZST’92 (Monterey, Ca., Nov.). ACM, New York, 89–97.

FLECCHIA, M. A. AND BERGERON, R. D. 1987. Specifying complex dialogs in ALGAE. In Human

Factors in Computing Systems, CHI + GI’87 (Toronto, Ont., Canada, Apr.). ACM, New York,

229-234.

FRANK, M. R. AND FOLEY, J. D. 1993. Model-based user interface design by example and by
interview. In ACM SIGGRAPH Symposium on User Interface Software and Technology,

Proceedings UZST’93 (Atlanta, Ga., Nov.). ACM, New York, 129-137.

GASKINS, T. 1992. PEXZib Programming Manual. O’Reilly and Associates, Inc., Sebastopol,

Calif.

GLEICHER, M., 1993. A graphics toolkit based on differential constraints. In ACM SIGGRAPH

Symposium on User Interface Software and Technology, Proceedings UIST’93 (Atlanta, Ga.,

Nov.). ACM, New York, 109-120.

GREEN, M. 1986. A survey of three dialog models. ACM Trans. Graph. 5, 3 (July), 244-275.

GUIMARAES, N. M., CORREIA, N. M., AND CARMO, T. A. 1992. Programming time in multimedia
user interfaces. In ACM SIGGRAPH Symposmm on User Interface Software and Technology,

Proceedings UZST’92 (Monterey, Ca., Nov.). ACM, New York, 125-134.

HARTSON, H. R. AND HIX, D. 1989. Human-computer interface development: Concepts and
systems for its management. ACM Comput. Suru. 21, 1 (Mar.), 5–92.

HARTSON, H. R., SIOCHI, A. C., AND HIX, D. 1990. The UAN: A user-oriented representation for
direct manipulation interface designs. ACM Trans. Inf. Syst. 8, 3 (July), 181-203.

HAYES, P. J., SZEKELY, P. A., AND LERNER, R. A. 1985. Design alternatives for user interface
management systems based on experience with COUSIN. In Human Factors in Computmg

Systems, Proceedings SIGCHI’85 (San Francisco, Ca., Apr.). ACM, New York, 169–175.

HENDERSON, D. A., JR. 1986. The Trillium user interface design environment. In Human

Factors in Computing Systems, Proceedings SIGCHI’86. ACM, New York, 221-227.

ACM TransactIons on Computer-Human Interaction, Vol. 2, No, 1, March 1995.

100 . Brad A. Myers

HILL, R. D. 1993. The Rendezvous constraint maintenance system. In ACM SIGGRAPH

Symposium on User Interface Software and Technology, Proceedings UIST’93 (Atlanta, Ga.,
Nov.). ACM, New York, 225-234.

HILL, R. D. 1986. Supporting concurrency, communication and synchronization in human-

computer interaction—The Sassafras UIMS. ACM Trans. Graph. 5, 3 (July), 179–210.

HILL, R. D., BRINCK, T., PATTERSON, J. F., ROHALL, S. L., AND WILNER, W. T. 1993. The

Rendezvous language and architecture. Commun. ACM 36, 1 (Jan.), 62-67.

HE, D. 1989. A procedure for evaluating human-computer interface development tools. In

ACM SIGGRAPHSymposium on User Interface Software and Technology, Proceedings UIST’89

(Williamsburg, Vs., Nov.). ACM, New York, 53-61.
HUDSON, S. E. 1993. User interface specification using an enhanced spreadsheet model. Tech.

Rep. GIT-GVW93-20, Georgia Tech Graphics, Visualization and Usability Center.

HUDSON, S. E. AND STASKO, J. T. 1993. Animation support in a user interface toolkit: Flexible,

robust, and reusable abstractions. In ACM SIGGRAPH Symposmm on User Interface Software

and Technology, Proceedings UIST’93 (Atlanta, Ga., Nov.). ACM, New York, 57–67.

INGALLS, D. H. H. 1981. The Smalltalk graphics kernel. Byte Msg. 6, 8 (Aug.), 168-194.

JACOB, R. J. K. 1986. A specification language for direct manipulation interfaces. ACM Trans.

Graph. 5, 4 (Oct.), 283-317.

JOHNSON,J. A., NARD1, B. A., ZARiUER,C. L., AND MILLER, J. R. 1993. ACE: Building interactive

graphical applications. Commun. ACM 36, 4 (Apr.), 41-55.

KARRER, A. AND SCACCHI, W. 1990. Requirements for an extensible object-oriented tree/graph

editor. In ACM SIGGRAPH Symposium on User Interface Software and Technology, Proceed-

ings ULST’90 (Snowbird, Utah, Oct.). ACM, New York, 84–91.

KIM, W. C. AND FOLEY, J. D. 1993. Providing high-level control and expert assistance in the

user interface presentation design. In Human Factors in Computing Systems, Proceedings

ZNTERCHI’93 (Amsterdam, The Netherlands, Apr.). ACM, New York, 430-437.

LANDAY, J. A. AND MYERS, B. A. 1995. Interactive sketching for the early stages of user

interface design. In Human Factors in Computing Systems, Proceedings of SIGCHI ’95. ACM,

New York.

LINTON, M. A., VLISSIDES, J. M., AND CALDER, P. R. 1989. Composing user interfaces with

InterViews. IEEE Comput. 22, 2 (Feb.), 8-22.

MCCORMACK, J. AND ABEIYTE, P. 1988. An overview of the X toolkit. In ACM SIGGRAPH

Symposium on User Interface Software and Technology, Proceedings UIST’88 (Banff, Alberta,

Canada, Oct.). ACM, New York, 46-55.

MYERS, B. A. 1994. Challenges of HCI design and implementation. ACM Interactions 1, 1.

MYERS, B. A. (ED.). 1992a. Languages for Developing User Interfaces. Jones and Bartlett,

Boston.

MYERS, B. A. 1992b. Demonstrational interfaces: A step beyond direct manipulation. IEEE

Comput. 25, 8 (Aug.), 61-73.

MYERS, B. A. 1991a. Separating application code from toolkits: Eliminating the spaghetti of

call-backs. In ACM SIGGRAPH Symposium on User Interface Software and Technology,

Proceedings UIST’91, (Hilton Head, SC, Nov.). ACM, New York, 211-220.

MYERS, B. A. 1991b. Graphical techniques in a spreadsheet for specifying user interfaces. In

Human Factors in Computing Systems, Proceedings SIGCHI’91 (New Orleans, La., Apr.).

ACM, New York, 243–249.

MYERS, B. A. 1990a. A new model for handling input. ACM Trans. Inf. Syst. 8, 3 (July),

289-320.

MYERS, B. A. 1990b. All the Widgets. SIGGRAPH Vial. Rev. 57.

MYERS, B. A. 1990c. Taxonomies of visual programming and program visualization. J. Vis.

Lang. Comput. 1, 1 (Mar.), 97-123.

MYERS, B. A. 1989. User interface tools: Introduction and survey. IEEE Softw. 6, 1 (Jan.),

15-23.

MYERS, B. A. 1988a. A taxonomy of user interfaces for window managers. IEEE Comput.

Graph. Appl. 8, 5 (Sept.), 65-84.

MYERS, B. A. 1988b. Creating User Interfaces by Demonstration. Academic Press, Boston.

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

User Interface Software Tools . 101

MYERS, B. A. 1986. A complete and eflicient implementation of covered windows. IEEE

Comput. 19, 9 (Sept.), 57-67.

MYRRS, B. A. 1984. The user interface for Sapphire. IEEE Comput. Graph. Appl. 4, 12 (Dec.),

13-23.

MYERS, B. A. AND ROSSON, M. B. 1992. Survey on user interface programming. In Human

Factors in Computing Systems, Proceedings SIGCHI’92 (Monterey, Ca., May). ACM, New

York, 195–202.

MYERS, B. A. AND VANDER ZANDEN, B. 1992. Environment for rapid creation of interactive

design tools. M. J. Cornput. Graph. 8, 2 (Feb.), 94-116.

MYERS, B. A., SMITH, D. C., AND HoRN, B. 1992a. Report of the ‘End-User Programming’

working group. In Languages for Developing User Interfaces. Jones and Bartlett, Boston,

343-366.

MYERS, B. A., GIUSE, D., AND VANDER ZANDEN, B. 1992b. Declarative programming in a

prototype-instance system: Object-oriented programming without writing methods. Sigplan

Not. 27, 10 (Oct.), 184-200,

MYERS, B. A., GIUSE, D. A., DANNENBERG, R. B., VANDER ZANDEN, B., KOSBIE, D. S., PERWN, E.,

MICKISH, A., AND MARCHAL, P. 1990. Garnet: Comprehensive support for graphical, highly-

interactive user interfaces. IEEE Comput. 23, 11 (Nov.), 71–85.

MYERS, B. A., MCDANIEL, R. G., AND KOSBIE, D. S. 1993. Marquise: Creating complete user

interfaces by demonstration. In Human Factors in Computing Systems, Proceedings INTER-

CHZ’93, (Amsterdam, The Netherlands, Apr.). ACM, New York, 293-300.

MYERS, B. A., VANDER ZANDEN, B., DANNENBERG, R. B. 1989. Creating graphical interactive

application objects by demonstration. In ACM SIGGRAPH Symposium on User Interface

Soflware and Technology, Proceedings UIST’89 (Williamsburg, Vs., Nov.). ACM, New York,

95-104.

NECHES, R., FOLEY, J., SZERELY, P., SURAVIRIYA, P., Luo, P., KOVACEWC, S., AND HUDSON, S.

1993. Knowledgeable development environments using shared design models. In Proceedings

of the 1993 International Workshop on Intelligent User Interfaces, ACM, New York, 63–70,

NEWBERY, F. J. 1988. An interface description language for graph editors. In 1988 IEEE

Workshop on Visual Languages. IEEE Computer Society, Washington, D. C., 144-149.

NEWMAN, W. M. 1968. A system for interactive graphical programming. In A.17PS Spring

Joint Computer Conference. AFIPS, Montvale, N.J., 47-54.

NIELSEN, J. 1993. Noncommand user interfaces. Commun. ACM 36, 4 (Apr.), 83-99.

OLSEN, D. R,, JR. 1992. User Interface Management Systems: Models and Algorithms. Morgan

Kaufmann, San Mateo, Calif.

OLSEN, D. R., JR. 1989. A programming language basis for user interface management. In

Human Factors in Computing Systems, Proceedings SIGCHI’89 (Austin, Tex., Apr.). ACM,

New York, 171-176.

OLSEN, D. R., JR. 1987. Larger issues in user interface management. Comput. Graph. 21, 2

(Apr.), 134-137.
OLSEN, D. R., JR. 1986. Mike: The Menu Interaction Kontrol Environment. ACM Trans.

Graph. 5,4 (Oct.), 318-344.

OLSEN, D. R., JR. AND DEMPSEY, E. P. 1983. Syngraph: A graphical user interface generator. In

SIGGRAPH ’83. Comput. Graph. 17, 3 (July), 43-50.
OLSEN, D. R., JR. AND HALVERSEN, B. W. 1988. Interface usage measurements in a user

interface management system. In ACM SIGGRAPH Symposium on User Interface Software

and Technology, Proceedings UIST’88 (Banff, Alberta, Canada, Oct.). ACM, New York,

102-108.

OLSEN, D. R., JR., FOLEY, J. D., HUDSON, S. E., MILLER, J. AND MYERS, B. 1993. Research

directions for user interface software tools. Behau. hf. Tech. 12, 2 (Mar. -Apr.), 80-97.

OUSTERHOUT, J. K. 1991. An Xll toolkit based on the Tcl language. In Winter USENZX.

USENIX Assoc., Berkeley, Calif., 105-115.

PALEY, A. J., HANSEN, W., KAZAR, M., SHERMAN, M., WADLOW, M., NEUEUNDORFFER,T., STERN, Z.,
BADm, M., AND PETERS, T. 1988. The Andrew toolkit—An oven=iew, In Proceedings of

Winter Usenix Technical Conference (Dallas, Tex., Feb.). USENIX Assoc., Berkeley, Calif.,

9-21.

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

102 . Brad A. Myers

PAUSCH, R,, CONWAY, M., AND DELINE, R. 1992. Lesson learned from SUIT, the Simple User

Interface Toolkit. ACM Trans. Inf. Syst. 10,4 (Oct.),320-344.

PI~, R, 1983. Graphics in overlapping bitmap layers. ACM Trans. Graph. 2, 2 (Apr.),

135–160. Also in Computer Graphccs: SIGGRAPH’83 Conference Proceedings, 1983. pp.

331-355.

RUSSO, P. AND BOOR, S. 1993. How fluent is your interface? Designing for international users.

In Human Factors m Computmg Systems, Proceedings INTERCHI’93 (Amsterdam, Apr.).

ACM, New York, 342-347.

SAMUELSON, P. 1993. The ups and downs of look and feel. Commun. ACM 36, 4 (Apr.), 29-35.

SCHEIFLER, R. W. AND GETTYS, J. 1986. The X Window System. ACM Trans. Graph. 5, 2

(Apr.), 79-1o9.

SCHMUCKER, K. J. 1986. MacApp: An application framework. Byte 11, 8 (Aug.), 189-193.

SCHULERT, A. J., ROGERS, G. T., AND HAMILTON, J. A. 1985, ADM-A Dialo~e Manager. In

Human Factors in Computing Systems, Proceedings SIGCHI’85. ACM, New York, 177-183.

SINGH, G. AND GREEN, M. 1989. Chisel: A system for creating highly interactive screen layouts.

In ACM SIGGRAPH Symposmm on User Interface Software and Technology, Proceedings

UIST’89. ACM, New York, 86-94.
SINGH, G. AND GREEN, M. 1988. Designing the interface designer’s interface. In ACM SZG-

GRAPH Symposium on User Interface Software and Technology, Proceedings UIST’88 (13anff,

Alberta, Canada, Oct.). ACM, New York, 109-116.

SMITH, D. C., IRBY, C., KIMBALL, R., VERPLANK, B., AND HARSLEM, E. 1982. Designing the Star

user interface. Byte 7, 4 (Apr.), 242–282.

STALLMAN, R. M. 1979. Emacs: The extensible, customizable, self-documenting display editor.

Tech. Rep. 519, MIT Artificial Intelligence Lab, Cambridge, Mass.

STEVENS, A., ROBERTS, B., AND STEAD, L. 1983. The use of a sophisticated graphics interface in

computer-assisted instruction. IEEE Comput. Graph. Appl. 3, 2 (Mar. /Apr.), 25–31.

STMUSS, P. S. AND CmEY, R. 1992. An object-oriented 3D graphics toolkit. In SIGGRAPH ’92.

Comput. Graph. 26, 2, 341-349.

SUKAVIRIYA, P. AND FOLEY, J. D. 1990. Coupling a UI framework with automatic generation of

context-sensitive animated help. In ACM SIGGRAPH Symposium on User Interface Sojlware

and Technology, Proceedings UZST’90 (Snowbird, Utah, Oct.). ACM, New York, 152– 166.

SUKAVIRIYA, N., KOVACEVIC, S., FOLEY, J., MYERS, B., OLSEN, D., AND SCHNEIDER-HUFSCHMIDT, M.

1994. Model-based user interfaces: What is it and why should I care? In ACM SIGGRAPH

Symposium on User Interface Software and Technology, Proceedings UIST’94. ACM, New
York, 133-135.

SUKAVIRIYA, P., FOLEY, J. D., AND GRIFFITH, T. 1993. A second generation user interface design

environment: The model and the runtime architecture. In Human Factors in Computmg

Systems, Proceedings INTERCHI’93 (Amsterdam, Apr.). ACM, New York, 375-382.

SUTHERLAND, I. E., 1963. SketchPad: A man-machine graphical communication system. In

AFZPS Spring Joint Computer Conference. AFIPS, Montvale, N.J., 329–346.

SWINEHART, D., ZELLWEGER, P., BEACH, R., AND HAGMANN, R. 1986. A structural view of the

Cedar programming environment. ACM Trans. Program. Lang. Syst. 8, 4 (Oct.), 419-490.

SZEKELY, P., LUO, P., AND NECHES, R. 1993. Beyond interface builders: Model-based interface

tools. In Human Factors in Computing Systems, Proceedings INTERCHI’93 (Amsterdam,

Apr.), 383-390.

TEITELMAN, W. 1979. A display oriented programmer’s assistant. Int. J. Man Mach. Stud. 11,
157-187. Also Xerox PARC Tech. Rep. CSL-77-3, Palo Alto, CA, March 8, 1977.

TESLER, L. 1981. The Smalltalk environment. Byte Msg. 6, 8 (Aug.), 90-147,

VANDER ZANDEN, B. AND MYERS, B. A. 1990. Automatic, look-and-feel independent dialog

creation for graphical user interfaces. In Human Factors in Computmg Systems, Proceedings

SIGCHI’90, (Seattle, Wash., Apr.). ACM, New York, 27-34.

VLMSIDES, J. M. AND LINTON, M. A. 1990. Unidraw: A framework for building domain-specific

graphical editors. ACM Trans. Znf. Syst. 8, 3 (July), 204-236.

VLISSIDES, J. M. AND TANG, S. 1991. A Unidraw-based user interface builder. In ACM SIG-

GRAPH Symposium on User Interface Software and Technology, Proceedings UIST’91. ACM,

New York, 201-210.

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995,

User Interface Software Tools . 103

WERNECKE, J. 1994. The Inventor Mentor. Addison-Wesley, Reading, Mass.

WIECHA, C., BENNETT, W., BOIES, S., GOULD, J.j AND GREENE, S. 1990. ITS: A tool for rapidly

developing interactive applications. ACM Trams. Inf. S’yst. 8, 3 (July), 204-236.

WIECHA, C., BOIES, S., GREEN, M., HUDSON, S., AND MYERS, B. 1989. Direct manipulation of

programming: How should we design interfaces? In ACM SIGGRAPH Symposium on User

Interface Software and Technology, Proceedings UIST’89 (Williamsburg, Vs., Nov.). ACM,

New York, 124-126.

WILDE, N. AND LEWIS, C. 1990. Spreadsheet-based interactive graphics: From prototype to tool.

In Human Factors in Computing Systems, Proceedings SIGCHI’90. ACM, New York, 153-159.

WILSON, D. 1990. Programming with MacApp. Addison-Wesley, Reading, Mass.

X BUSINESS GROUP. 1994. Interface Development Technology. X Business Group, Inc., Fre-

montj Calif.

ZELEZNIK, R. C., CONNER, D., WLOKA, M., ALIAGA, D., HUANG, N., HUBBARD, P., KNEP, B.,

KAUFMAN, H., HUGHES, J., AND VAN DAM, A. 1991. An object-oriented framework for the

integration of interactive animation techniques. In SIGGRAPH ’91. Comput. Graph. 25, 4

(July), 105-112.

Received August 1993; revised August 1994; accepted October 1994

ACM Transactions on Computer-Human Interaction, Vol. 2, No. 1, March 1995.

