
Brad A. Myers

Challenges of HCI
Design and
Implementation

A q, p
About the Author

BRAD MYERS

is a Senior Research

Computer Scientist at

Carnegie Mellon

University, where he is the

principal investigator for

the Garnet User Intdace

Development Environment

and the Demonstrational

Intdaces Projtzt.

entail.* bam@cr.cmu.edu

etting the user interface right is becoming criti-
cal to the success of products, and everyone
knows that designing and implementing
human-computer interfaces is difficult and
time-consuming. But why is this true? Should
we expect that a new method is around the cor-
ner that will make the design significantly easi-
er? Will the next generation of user interface
toolkits make the implementation trivial? No.
This article discusses reasons why a focus on the
user interface is important, and why user inter-
face design and implementation are inherently

difficult tasks and will remain so for the fore-
seeable future.

Why User interfaces Are Important

A significant growth area for computers is their
use in consumer electronics. This is why comput-
er man&cturers like Apple are getting into the
“personal digital assistant” market. The Friend21
project in Japan is a six-year project started in
1988 with the goal of promoting research and
development into next-generation user interfaces,
primarily intelligent agents and adaptive inter-
faces. It is funded at about $120 million, and is a
consortium of 14 major Japanese companies
organized by the Ministry of International Trade
and Industry. Friend21 stands for Future
Personalized Information Environment
Development [2GJ. The project believes that in
the 2Ist century everyone will be using comput-
ers for their everyday activities [26]. For the users
of these devices, ease-of-use has become a prime
factor in decisions about which ones to buy.

interactions . . . january 1994

--- I,- _-_ C.._~ -_

,’ _

‘, :
,.,
.i.
,_-

t ,-
.*

I

There is substmtitil empirical evidence that

Time is valuable, people do not want to read
manuals, and they want to spend their time
accomplishing their goals, not learning how to
operate a computer-based system.

Usability has also become critical for com-
mercial desktop software. User’s demands on
software have changed; they expect to be able to
sit down and use software with little or no frus-
tration. Readers of PC World magazine indicat-
ed in a survey that usability was as important a
review parameter as the more traditional issues
of speed and features. Thus, usability is a do-or-
die decision for developers, and is being cited
with increasing frequency and explicitness in
product advertisements.

Although American industry has invested
heavily in information technology, the expected
productivity improvements have not been real-
ized [2]. Usability at the individual, group and
firm level has been cited as a culprit in this pro-
ductivity paradox. For instance, the ever-
changing computer environments caused by
new product introductions and upgrades make
continual learning demands on workers [2].

There is substantial empirical evidence that
attention to usability dramatically decreases
costs and increases productivity. A model of
human performance, and a corroborating
empirical study, predicted that a new worksta-
tion for telephone operators would decrease pro-
ductivity despite improved hardware and
software. The resulting decision not to buy the
new workstation is credited with saving
NYNEX an estimated $2 million a year [12].

A different study reported savings from
usability engineering of $41,700 in a small
application used by 23,000 marketing person-
nel, and $6,800,000 for a large business applica-
tion used by 240,000 employees [17]. This was
attributed to decreased task time, fewer errors,
greatly reduced user disruption, reduced burden
on support staff, elimination of training, and

avoiding changes in software &er release. One
analysis estimates the mean benefit for finding
eachusabilityproblemat$19,300 [19].Amath-
ematical model based on 11 studies suggests that
using software which has undergone thorough
usability engineering will save a small project
$39,000, a medium project $613,000 and a
large project $8,200,000 [24]. By estimating all
the costs associated with usability engineering,
another study found that the benefits can be up
to 5000 times the cost [25].

Other studies have shown that it is impor-
tant to have HCI specialists involved in design.
A formal experiment reported that professional
HCI designers created interfaces that had fewer
errors and supported faster user execution than
interfaces designed by programmers [3]. One
reason is that training and experience in HCI
design has a clear impact on the designer’s men-
tal model of interfaces and of the user interface
design task [l 11. This implies that HCI design
is not simply a matter of luck or common sense,
and that experience using a computer is not suf-
ficient for designing a good user interface, but
that specific training in HCI is required.

In addition, poor user interfaces have con-
tributed to disasters including loss of life. For
example, the complicated user interface of the
Aegis tracking system was a contributing cause
to the erroneous shooting down of an Iranian
passenger plane, and the US Stark ship’s inabil-
ity to cope with Iraqi Exocet missiles was partly
attributed to the human-computer interface
[22]. Sometimes the im,dementcEtion of the user
interface can be at fault. A number of people
died from radiation overdoses partially as a
result of faulty cursor handling code in the
Therac-25 [33].

The importance of a focus on human-com-
puter interaction has been recognized by indus-
try, academia, government and the trade press.
The Committee to Assess the Scope and

interactions . . . january 1994

Direction of Computer Science and
Technology of the National Research Council
in their report “Computing the Future” lists
user interfaces as one of the six “core subfields’
of CS, and notes that it is “very important” or
‘tent& to a number of important application
areas such as global change research, computa-
tional biology, commercial computing, and
electronic libraries [15]. Two surveys of
Information Services practitioners and man-
agers listed Human Interface technologies as
the most critical area for organizational impact
[13]: New regulations, such as Directive 90/270
from the Council of European Communities,
are being passed that require interfaces to be
“easy to use and adaptable to the operator” [5].
ACM has started two new publications about
HCI: Transactions on Computer- Human
Interaction and this magazine, interactions.
ARPA and NSF in the United States, ESPRIT
in Europe and MIT1 in Japan have all initiated
significant HCI initiatives.

User Interfaces Are Hard to Design

Although the benefits of usability engineering
are clear, no one believes that this solves the
problem of making interfaces easy to use.
However, there is surprisingly little attention to
why user interfaces are difftcult to design.

The Difficulty in Knowing Tasks and Users
The first command to user interface design-

ers is “know thy user.” This has been formalized
to some extent by the HCI sub-field of “task
analysis.” Unfortunately, this is extremely diffi-
cult in practice.

Surveys of software in general show that the
deep application-specific knowledge which is
required to successfully build large, complex
systems is held by only a few developers, and is
hard to acquire [lo].

Furthermore, Don Norman reports:

My experience is that the . . . initial spec&a-
tions . . . are usualb wrong, ambiguous or
incomplete. In part., this is because thy are
deueloped b people who do zzot understand
the realproblems faced by the eventual
users.. . . Worse, the users may not know what
they want, so having them on the design team

interactions . . . january 1994

., ----_-- . *- .- --~

No Silver Bullet I

Like software in general, there is no “silver bul-
let” 171 to make user interface design and
implementation easier. It seems that user inter-
faces are often more difficult to engineer than

other parts of a system. For example, in addi-
tion to the difficulties associated with design-
ing any complex software system, user

interfaces add the following problems:
designers have difficulty thinking like

users
tasks and domains are complex

various aspects of the design must be
balanced (standards, graphic design, tech-
nical writing, internationalization, perfor-
mance, multiple levels of detail, social

factors, legal issues, and implementation

time)
existing theories and guidelines are not

sufficient
user Interface design is a creative process
iterative design is difficult

User interfaces are especially hard to imple-

ment because:
they are hard to design, requiring itera-

tive implementation
they are reactive and must be program-
med from the “inside-out”
they generally require multiprocessing

there are real-time requirements for han-

dling input events
the software must be especially robust

while supporting aborting and undoing
of most actions
it is difficult to test user interface soft-
ware
today’s languages do not provide support
for user interfaces
the tools to help with user interfaces can

be extremely complex
programmers report an added difficulty
in modularizing user interface software

is not a solution. Actually, developing correct
spec&ations may not be solvable, because . . .
a true understanding of a tool can on4 come
through usage, in part because new tools
change the system, thereby changing both
needs and requirements... Ah! the formahz-
tion in the world will not help us solve this
problem. [electronic mail message]
The user interface portion of the code

requires an even deeper understanding of the
users than the design of the functionality since
the interface must match the skills, expectations
and needs of the intended users. Users are
extremely diverse, so interfaces good for some
may be bad for others. The “individual differ-
ences” sub-field of HCI is devoted to studying
this problem. Furthermore, designers can never
anticipate all the different uses to which the sys-
tem will be applied.

There is ample evidence that programmers
have a difficult time thinking like end-users
[111. One inherent difficulty is that program-
mers and designers cannot remember what they
used to not know. Experiments have shown
that people are unable to return in memory to
their novice state [8]. Hence they cannot antic-
ipate the reactions of novices and overestimate
what novices actually know. Furthermore, one
of the biggest failings of bad user interfaces is
that they require users to think in terms of sys-
tem objects and concepts rather than in the
objects and concepts of the application domain.
HCI specialists seem to be better at thinking
like end users, which is one reason their inter-
face designs are easier to use. But finding HCI
specialists who are also domain experts is often
dif&ult.

The Inherent Complexity of Tasks and
Applications

An ordinary telephone is pretty easy to use,
but modern business phones that can hold,
transfer, record, and playback calls can be quite
challenging due to the increased complexity.
Similarly, Microsoft Word for the Macintosh
has about 300 commands and CAD programs
like AutoCAD have over 1000. It is clearly
impossible for applications with that many
fimctions to have an interface that is as easy to
learn and use as one that has only a few func-
tions.

This increased complexity comes from many
sources. Partly, it results from the complex
requirements in the domain itself. For example,
CAD programs must provide techniques for
carefully aligning objects, which is not neces-
sary in simple drawing packages. Another rea-
son is that each new version of a product needs
to have new features so people will be motivat-
ed to upgrade. Additional complexity arises
from providing a single, generic application
that must work for a variety of users and
domains. Thus, Microsoft Word has dozens of
ways to move the cursor, so that individuals’
preferences can be accommodated. Similarly,
CAD programs might provide a dozen different
ways to draw a circle so that users can choose
the appropriate method for their tasks.

One way to try to overcome complexity is to
use metaphors that exploit the user’s prior
knowledge by making interface objects seem
like objects that the user is familiar with.
However:

instead of reducing the absolute complexity of
an interface, this approach seeks to increase the
familiarity of the concepts.... [However] the
inevitable mismatches of the metaphor and its
target are a source of new complexities for
users. [YJ

The Variety of Different Aspects and
Requirements

All design involves tradeoffs, but it seems
that user interface design involves a much larg-
er number of concerns, and they are the
purview of widely different disciplines. User
interface design includes considerations about:

Standards: An interface will usually need to
adhere to standard user interface guidelines,
such as the Macintosh, Windows, or Motif user
interface styles. However, these style guides are
usually hard to interpret and apply.
Furthermore, the standards will only cover a
small part of the user interface design, and will
not insure that even this part has high usability.
Other “standards” with which a design might
need to be compatible include previous versions
of the product, and related products from com-
petitors.

Graphic design: An important part of the
user interface design is the graphical presenta-
tion, including the layout, colors, icon design,

interactions . . . january 1994

and text fonts, This is typically the province of
professional graphic designers.

Documentation, messages, and help text:
One study showed that rewriting the help mes-
sages, prompts, and documentation to increase
their quality had significantly more impact on
the usability of a system than varying the inter-
face style [a. Thus it is important to have good
technical writers participating in the design.

Internationalization: Many products today
will be used by people who speak different lan-
guages. Internationalizing an interface is much
more difficult than simply translating the text
strings, and may include different number,
date, and time formats, new input methods,
redesigned layouts, different color schemes, and
new icons [28].

Performance: Users will not tolerate inter-
faces that perform too slowly. For example, it
was reported that users did not like early ver-
sions of the Xerox Star office workstation
because there were delays in the response time,
even though the users’ overall productivity was
much higher. Performance concerns explain
why moving windows on the Macintosh shows
XORed outlines rather than having the entire
window move as on the NeXT. The designer
must always balance what is desirable with what
will keep up with the mouse.

High-level and low-level details: It is not
sufficient to get the overall model correct; each
low-level detail must also be perfected. If users
do not like the placement of the “control” key
on the keyboard, or cannot find a menu item,
they will not like the interface. Similarly, even if
each low-level detail is perfect, if the overall sys-
tem model does not make sense, the interface
may be unusable.

External factors: Many systems fail for
political, organizational, and social reasons
entirely independent of the design of the inter-
face. If users perceive that the software will
threaten their jobs or status, they will not like it
no matter what the user interface. Designers
should take into account the social context in
which their system will be used, and try to
involve users in the system’s design so they will
feel less threatened.

Legal issues: One way to get a good design
is to copy a design that has proven to be work-
able and popular. Unfortunately, there are

many situations where this is illegal today.
Lotus sued Paperback Software for copying its
menu structure, and Apple has sued a number
of companies for copying its user interface.
Designers must be aware of which interface ele-
ments can be used and which cannot.

Time to program and test: There is always
a trade-off between the time to test and perfect
a user interface, and the time to ship the prod-
uct. The more times an interface is iteratively
refined, the better it is likely to be, but then it
will be later to reach the marketplace.

Others: Interfaces that are aimed at special
audiences have additional concerns. For exam-
ple, software that helps multiple users collabo-
rate (computer-supported cooperative work or
CSCW) has interesting design constraints, such
as what does Undo mean when multiple people
are using the same software? Advanced input
devices and techniques, such as pen-based ges-
ture recognition, speech, or Data Glo~es~,
also raise many interesting issues.

The implication of these requirements is that
all user interface design involves trade-offs, and
it is impossible to optimize all criteria at once.
Since one person would find it difficult to be
competent, let alone expert, in this many areas,
multiple people with quite different skills must
be involved with different parts of the design.
This increases the coordination and manage-
ment overhead. It may be especially difficult
since people from different backgrounds often
have different terminology and approaches to
problems.

Theories and Guidelines Are Not Sufficient
There are many methodologies, theories and

guidelines for how to produce a good user inter-
face (each ACM CHI conference proceedings is
likely to have a few). Some of these guidelines
are quite specific (e.g., “do not use more than
three fonts”), while others are quite vague (e.g.,
“minimize the amount of input from the usei’).
Smith and Mosier have compiled 944 guide-
lines in a 478 page report [31]. Although there
are a number of reports of successful systems
created using various methodologies, evidence
suggests that the skill of the designers was the
primary contributor to the quality of the inter-
face, rather than the method or theory. In fact,
there are important counter-examples to even

interactions. . . january 1994

the most basic guidelines. For instance, most
sources put consistency at the top of lists of
guidelines, but Grudin discusses many cases
where consistency is not appropriate. For exam-
ple, menu systems might have the default selec-
tion be the more recent or most likely selection,
but still might not use this rule for questions
confirming dangerous operations [141. In addi-
tion, some of the guidelines in Smith and
Mosier are contradictory.

Whereas early papers in HCI were full of
experimental laboratory studies of small issues
in user interface design, such as the proper
menu organization, you rarely see any of these
now because the results have failed to generalize.

In fact, Tom Landauer says:
For the mostpart, usejid theory ,lj5om cognitive
psychologyl is impossible, because the behavior
of human- computer systems is chaotic or
worse, higb& complex, dependent on many
unpredictable variables, or just too bard to
understand. Were it ispossibh, the use of
theory will be constrained and modest, because
the theories will be imprecise, will cover only
limited aspects of behavior, . . . and will not
necessarily generalize. [lS/

Of course, other researchers disagree. For
example, current research on modeling users
with the GOMS model has successfully helped
evaluate interfaces and predict human behavior
in a large and ever- growing number of circum-
stances: text-editing, VLSI layout, graphical
editing, spreadsheets, computer command
abbreviations, high-functionality oscilloscopes,
telephone operator workstations, video games,
etc. [16]

Design is a Creative Process
As a result of the lack of theory and method-

ology, user interface design remains a creative
process, rather than a mechanized process of
following rules. In fact, many consider design-
ing user interfaces to be more like creating
works of art rather than the product of proper
engineering. Thus, user interface design may be
more like architectural design, or even photog-
raphy, where there are significant technical
skills and rules that must be learned, but fun-
damentally the design is artistic. And as with

these other creative activities, some people will
have more talent for them than others. Whereas
courses can certainly teach people important
lessons that may bring their user interface
designs to a level of competence, it may be
impossible to teach how to make great designs,
just as photography courses cannot teach stu-
dents how to be the next Ansel Adams.

The Difficulty of Iterative Design
Due to the dificulties just described, HCI

professionals and HCI methodologies recom-
mend iterative design, where the interface is
prototyped and repeatedly redesigned and test-
ed on actual end users. A recent survey report-
ed that 87% of the development projects used
iterative design in some form [21]. (Other sur-
veys put the number at around SO%.)
However, this process is also quite difficult.

One important problem is that the designer’s
intuition about how to f= an observed problem
may be wrong, so the new version of the system
may be worse than the previous version.
Therefore, it is difficult to know when to stop
iterating. Furthermore, “... [experimental] data
supports the idea that changes made to improve
one usability problem may introduce other
usability problems” [3]. The same data also
showed that while iterating on a poor design
does improve it, iteration never gets it to be as
good as an interface that was originally well-
designed. Thus iterative design does nor obviate
the need for good designers.

Another important problem is getting “real”
users with which to test. “Too often .,. testers
have to extrapolate from ‘problem’ users who
bring a set of ‘hidden agendas’ with them to the
test session” [4]. The actual users of a product
may be different from the buyers, so it is impor-
tant not to use the buyers as subjects.
Participants in tests are usually self-selected, so
they are likely to be more interested, motivated,
and capable than the actual end users.
Furthermore, when users know they are partic-
ipating in a test, they often behave differently
than they would in natural use of the system.
Each iteration of the testing should involve dif-
ferent users, so a large number of people might
be needed.

Finally, iterative testing can be quite long and
expensive. Formal tests may take up to 6 weeks,

interactions . . . january 1934

article

so getting answers back to the design team may
be slow. A usability lab may cost between
$70,000 and $250,000 in capital costs to set up,
plus professional staff When contracted out to
a consulting firm, a single usability test may cost
between $10,000 and $60,000, and when per-
formed in house, $3000 to $5000 [l]. For
CSCW systems which are used to link multiple
people, user testing is especially difficult because
a realistic task usually requires multiple people
and significant lengths of time. Nielsen provides
a survey of the costs for various techniques [24],
and shows that the benefits outweigh the costs.
Still the costs are considerable, and can take a
long time, which conflicts with the desire to get
products out quickly.

User Interfaces Are Hard to Implement

Many surveys have shown that the user inter-
face portion of the software accounts for over
half of the code and development time. For
example, one survey reports that over a wide
class of program types, machine types and tools
used, the percent of the design time, the imple-
mentation time, the maintenance time, and the
code size devoted to the user interface was
about 50% [21]. In fact, there are a number of
important reasons why user interface software
will inherently be among the most difficult
kinds of software to create. For example, if you
list the general properties that will make any
system difficult to implement, multiprocessing,
robustness and real-time requirements will be at
the top of the list, and these are all often present
in user interface software.

Need for Iterative Design
The need to use iterative design means that

the conventional software engineering “water-
fall” approach to software design, where the
user interface is fully specified, then imple-
mented, and later tested, is inadequate.
Instead, the specification, implementation, and
testing must be intertwined [32]. This makes it
very difficult to schedule and manage user
interface development.

Reactive Programming
Once the implementation begins, there are a

number of properties of user interface software
that make it more complex than other kinds of

software, especially for graphical, window-based
interfaces. One big difference is that modern
user interfaces must be written “inside-out.”
Rather than structuring the code so that the
application is in control, as is usually taught in
computer science classes, the application must
instead be structured as many subroutines which
are called by the user interface tool kit when the
user does something. This is sometimes called
“event-based programming.” Each subroutine
will have stringent time constraints so that it will
complete before the user is ready to give the next
command. Programmers must be trained to
write programs in this way, and it appears to be
more difficult for programmers to organize and
modularize reactive programs [27].

Multiprocessing
A related issue is that in order to be reactive,

user interface software is often organized into
multiple processes. All window systems and
graphical tool kits queue “event” records to
deliver the keyboard and mouse inputs from the
user to the user interface software. Users expect
to be able to abort and undo actions (for exam-
ple, by typing control-C or Command-dot).
Also, if a window’s graphics need to be redrawn
by the application, the window system notifies
the application by adding a special “redraw”
event to the queue. Therefore, the user interface
software must be structured so that it can accept
input events at all times, even while executing
commands. Consequently, any operations that
may take a long time, such as printing, search-
ing, global replace, re-paginating a document, or
even repainting the screen, should be executed
in a separate process. Alternatively, the long jobs
could poll for input events in their inner loop,
and then check to see how to handle the input,
but this is essentially a way to simulate multiple
processing. Furthermore, the window system
itself often runs as a separate process. Another
motivation for multiple processes is that the user
may be involved in multiple ongoing dialogs
with the application, for example, in different
windows. These dialogs will each need to retain
state about what the user has done, and will also
interact with each other.

Therefore, programmers creating user inter-
face software for these window systems and tool
kits will usually encounter the well-known

interactions . . _ january 1994

problems with multiple processes, including
synchronization, maintaining consistency
among multiple threads, deadlocks, and race
conditions.

The Need for Real-time Programming
Another set of difficulties stems from the

need for real-time programming. Most graphi-
cal, direct manipulation interfaces will have
objects that are animated or which move
around with the mouse. In order for this to be
attractive to users, the objects must be redis-
played between 30 and GO times per second
without uneven pauses. Therefore, the pro-
grammer must ensure that any necessary pro-
cessing to calculate the feedback can be
guaranteed to finish in about 16 milliseconds.
This might involve using less realistic but faster
approximations (such as XORed bounding
boxes), and complicated incremental algo-
rithms that compute the output based on a sin-
gle input which has changed, rather than a
simpler recalculation based on ail inputs.

The next generation of user interfaces will
include new technologies such as video, speech
and other sounds, animations of simulations,
and other “multimedia,” all of which have quite
stringent real-time constraints. The best way for
programmers to control the temporal aspects of
programs is still a difficult research question.

Need for Robustness
Naturally, all software has robustness

requirements. However, the software that han-
dles the users’ inputs has especially stringent
requirements because all inputs must be grace-
fully handled. Whereas a programmer might
define the interface to an internal procedure to
only work when passed a certain type of value,
the user interface must always accept any pos-
sible input, and continue to operate.
Furthermore, unlike internal routines that
might abort to a debugger when an erroneous
input is discovered, user interface sohware
must respond with a helpful error message, and
allow the user to start over or repair the error
and continue. To make the task even more dif-
ficult, user interfaces should allow the user to
abort and undo operations. Therefore, the pro-
grammer should implement most actions in a
way that will allow them to be aborted while

executing and reversed after completion. For
example, all code that calls functions that ask
the user for input must be prepared to accept a
special return value that means the user abort-
ed and did not provide the input, Special data
structures and coding styles are often required
to support this.

Low Testability
A related problem is the difficulty of testing

user interface sofbare for correctness. It is
extremely difficult to determine whether the
user interface has been tested completely. While
all complex sofnvare is difficult to test, one rea-
son that user interface software is more difficult
is that automated testing tools are rarely useful
for direct manipulation systems, since they have
difhculty providing input and testing the out-
put. For “regression testing” (to see if a new vcr-
sion of the software breaks things that used to
work in the previous version), tools for conven-
tional software will supply inputs and test the
outputs against the values produced by the pre-
vious version. However, in a direct manipula-
tion system, if buttons have moved or new
items have been added to menus, a transcript of
the input events from the previous version may
not invoke the desired operations. Furthcr-
more, the outputs of most operations are
changes to the screen, which can be impossible
for an automatic program to compare to a saved
picture since at least something in each screen is
likely to have changed between versions,

No Language Support
Another reason that programming user

interface sofiware is difficult is that the pro-
gramming languages used today do not contain
the appropriate features. For example, no pop-
ular computer programming language contains
primitives for graphical input and output.
Many languages, however, have input-output
primitives that will read and write strings; for
example, C provides scanf and printf.
Unfortunately, using these procedures produces
very bad user interfaces, since the user is
required to answer questions in a highly-modal
style, and there are no facilities for undo or
help. Therefore, the built-in input/output facil-
ities of the languages must be ignored and large
external libraries must be used instead.

inreracrions . . . january 1994

Itemtive design is vitalfor good tiser interfdces, &hough

it cmnot replace hdving good designers.

As discussed before, user interface software is
reactive and often requires multiprocessing.
Features to support these are missing from pro-
gramming languages. Research into user inter-
face software has identified other language
features that can make the creation of user
interface software easier. For example, most
people agree that user interface sobare should
be “object-oriented” but languages do not seem
to provide an appropriate object system: Apple
had to invent Object Pascal to implement the
first version of their MacApp framework, and
the implementors of Motif and Open Look for
Unix could not find an acceptable object system
so they hacked together an object system into C
called xt. One reason C++ is gaining in popu-
larity is the recognized need for an object-ori-
ented style to support user interface
programming, but C++ has no graphics primi-
tives or support for multiprocessing or reactive
programming. I have just completed a book
that discusses at length languages for program-
ming user interfaces [20].

Complexity of the Tools
Since the programming languages are not

sufXcient, a large number of tools have been
developed to address the user interface portion
of the software. Unfortunately, these tools are
notoriously difficult to use. Manuals for the
tools often run to many volumes and contain
hundreds of procedures. For example, the
Macintosh ToolBox manuals now fill six books.
Some tools even require the programmer to
learn an entirely new special-purpose program-
ming language to create the user interface (e.g.,
the UIL language for defining screen layouts for
Motif). Clearly, enormous training is involved
in learning to program user interfaces using
these tools. In spite of the size and complexities
of the tools, they may still not provide sufficient
flexibility to achieve the desired effect. For
example, in the Macintosh and Motif tool kits,
it is easy to have a keyboard accelerator that will
perform the same operation as a menu item,

but very difficult to have a keyboard command
do the same thing as an on-screen button.

It may also be difficult to use the underlying
graphics packages, which allow the rectangles,
circles and text to be drawn. Since the human
eye is quite sensitive to small differences, the
graphic displays must essentially be perfect: a
single pixel error in alignment will be visible.
Most existing graphics packages provide no
help with making the displays attractive.

Difficulty of Modularization
One of the most important ways to make

software easier to create and maintain is to
appropriately modularize the different parts.
The standard admonition in textbooks is that
the user interface portion should be separated
from the rest of the software, in part so that the
user interface can be easily changed (for itera-
tive design). Unfortunately, programmers find
in practice that it is difficult or impossible to
separate the user interface and application parts
[27], and changes to the user interface usually
require reprogramming parts of the application
also. Furthermore, modern user interface tool
kits make this problem harder because of the
widespread use of “call-back” procedures.
Usually, each widget (such as menus, scroll bars,
buttons, and string input fields) on the screen
requires the programmer to supply at least one
application procedure to be called when the
user operates it. Each type of widget will have
its own calling sequence for its call-back proce-
dures. Since an interface may be composed of
thousands of widgets, there are thousands of
these procedures, which tightly couples the
application with the user interface and creates a
maintenance nightmare [21].

Implications

Some of the implications of these results are
clear. Developers designing user interfaces
should involve trained user interface specialists,
since they have proven to significantly improve
the interfaces and be cost effective. Graphic

interactions. _ . january 1994

I ‘.

I-

j, --
+; :,

- . ----.-- - _ -. _.--

Ac!-mowledgment

Tbm&.c to Robert Bunu,

Prcson Ginrburg. Dario

Giuw, M&cl Gleicbu, Bill

Hch BonnieJohn, Sara

kkh James La&~ Jon

MC&, Bcmita Mws, Jakob

N&n, Frank Rittm, Bruce

Shwood DaoidSteie~

Brad finder zmdrm, and

Ah Wwfbkrt who pmvi&d

lxlpfil comments on earlier

d&s of thir paprr.

Tlti research toas sponrorni

& thr Aviohs Lab, WE&

Rerearch and Dtvclopmrnc

Center Aeronautical Sytmtr

Diuihn (AFSC), (I. S. Air

Force, IVtight-Pattmon AFB,

OH 45433-1543 u&

Contract F33615 90-O-G

1465, AQLZ Order No. 759%

designers and technical writers should also be
involved. While it is important to follow any
guidelines that are relevant, this is not sufficient
to ensure high quality. Iterative design is vital to
the creation of good user interfaces, although it
cannot replace having good designers. In gener-
al, usability engineering methods should be
followed, especially since there are some
simple “discount” methods that are often
sufficient [23].

When implementing user interfaces, pro-
gramming at the tool kit level is quite difficult,
but there are a growing number of higher-level
tools which can help significantly, and you
should take advantage of these. For example,
there are “interface builders” (which interactive-
ly lay out widgets) for every platform, and tools
like Apple’s HyperCard and Microsoft’s visual
Basic can make prototyping and creation of
some interfaces much easier. In fact, user inter-
face tool kits are one of the few examples of
large, extensively reusable, platform indepen-
dent, portable libraries. Interactive UI tools are
one of the only kinds of tools to have demon-
strated the long-sought factor-of-ten improve-
ment in programmer productivity. Tools that are
coming out of research labs are covering increas-
ingly more of the user interface task, are more
effective at helping the designer, and are creating
better user interfaces. These will probably evolve
into commercial products fairly rapidly.

The implications for educators are also clear.
The ACM, IEEE and others have called for
Human-Computer Interaction to be a more
central part of every computer programmer’s
education, since estimates are that more than
half of programmers will be dealing with user
interfaces. At the very least, all programmers
need to understand that HCI design is a valid
subfield where special training is required to
create high-quality user interfaces. Also, there
needs to be more programs where HCI special-
ists can be trained [30].

The agenda for researchers has been exhaus-
tively surveyed elsewhere [29]. There are oppor-
tunities in new interaction styles and input
devices (especially for manipulating 3-D
objects), user interface software tools (especially
for model-based and demonstrational construc-
tion of interfaces), better processes and
methodologies for developing and evaluating

interactions . .

user interfaces (especially those based on
testable models), and interfaces for special
applications such as those involving multiple
users (computer-supported cooperative work),
extremely large collections of data (searching,
browsing, visualizing), and new domains.

While the design and implementation of all
complex software is difficult, user interfaces
seem to add significant extra challenges. ‘We can
expect research into user interface design and
implementation to continue to provide better
theories, methodologies and tools, but the
problems discussed in this article are not likely
to be solved, and the user interface portion will
continue to be difftcult to design and implc-
ment. Furthermore, as new styles of human-
computer interaction evolve, such as speech and
gesture recognition, intelligent agents, and 3-D
visualization, the amount of effort directed to
the design and implementation of the user
interface can only increase. Fortunately, the
research and development community is up to
this challenge, and we can expect exciting inno-
vations in user interface designs and software in
the future. H

References

Ill Abelow, D. “Wake up! You’ve entered the transition

zone”. Comput. Lang. IO, 3 (Mar.. 1993), 41- 47.

5l
Attewell, l? Information technology and the produc-

tivity paradox. In Organizational Linkages and

Productivity. National Academy of Sciences,

Washington D.C., 1993.

ml
Bailey, G. Iterative methodology and designer tntin-

ing in human-computer interface design. In Human

Factors in Computing Systems: Proceedings of

INTERCHI ‘93 (Amsterdam, The Netherlands,

Apr.) ACM, New York, 1993, pp.198205.

En
Ballman, D. User involvemenr in the design procw:

Why, when and how. In Human Factors in

Computing Systems: Proceedings of INTERCHI’93

(Amsterdam, The Netherlands, Apr.) ACM, New

York, 1993, pp. 251-254.

•l
Billing&y, I? 1990 “EC directive may become dri-

ving force”. SIGCHI Bull. 25, 1 (Jan. 1993), 14-18.

ml
Borcnstein, N. The design and evaluation of on-line

help systems. Ph.D. Thesis, Tech. Rep. CMU CS-

85-151, Computer Science Dep., Carnegie Mellon

Univ., Pittsburgh, Pa., 1985.

q Brooks, EEJr. “No silver bullet: Essence and acci-

dents of software engineering”. IEEE Comput. 20,

. janunry 1994

article

4 (Apr.1987), 10-19.

q : Camerer, C., Loewenstein, G., and Weber, M. “The

curse of knowledge in economic settings: An experi-

mental analysis.” J.Pol.Econ. 97(1989), 1232-1254.

ml
Carroll, J.M., Ma& RL., and Kellogg, WA.

Interface metaphors and user interface design. In

Handbook of Human-Computer

Interaction. Elsevier Science Publishers B.V. (North

Holland), 1988, pp. 67-85.

q I Curtis, B., Kramer, H., and Iscoe, N. “A field study

of the software design process for large systems.”

Commun. ACM 31,ll (Nov. 1988), 1268-1287.

ml
Gillan, D.J., and Breedin, S. D. Designers’ models

of the human-computer interface. In Human

Factors in Computing Systems: Proceedings

of SIGCHI’BO (Seattle, Wa, Apr.) ACM, New York,

1990, pp. 391-398.

rrm Gray, W.D., John, B.E., and Atwoodm M.E., The

precis of Project Ernestine, or an overview of a vaii-

dation of GOMS. In Human Factors in

Computing Systems: Proceedings of SIGCHI’92,

Monterey, Ca., May) ACM, New York, 1992, pp.

307-312.

a
Grover, V and Go&u, M. “Information technolo-

gies for the 1990s: The executives’ view”. Commun.

faoe programming. In Human Factors in

Computing Systems: Proceedings of SIGCHI’92

(Monterey, Ca,, May)ACM, New York, 1992, pp.

195202.

ml Neumann, EG. “Inside risks: Putting on your best

interface.” Commun. ACM 34,3 (Mar. 1991).

•n
Nielsen, J. “Big paybacks from ‘discount’ usabiliry

engineering.” IEEE Softw. 7,3 (May 1990), 107-

108.

q Nielsen, J. and Landauer, T.K. A mathematical

ACM 36,3 (Mar. 1993), 17-19,102-103.

q
El

Grudin. J. “The case against user interface consis-

tency.” Commun. ACM 32, 10 (Oct. 1989), 1164-

1173.

am Hartmanis, J., etai. “Computing the fimtre.”

Commun. ACM 35,ll (Nov. 1992), 30-40.

q John, B.E., Vera, AH., and Newell, A., Towards RI
real-time GOMS. In The Soar Papers: Research on

Integrated Inteiiigence. MIT Press, Cambridge,

Mass., 1993.

q Karat, C.-M. Cost-benefit analysis of usability engi-

neering techniques. In Proceedings of the Human q
Factors Society 34th Annual Meeting. Vol. 2.

Human Factors Society, 1990.

aI : Iandauer, TX. Let’s get real: A position paper on q .
the role of cognitive psychology in the design of

humanly useful and usable systems. In Designing

Interaction. Cambridge University Press, q
Cambridge, Mass., 1991, pp. 60-74.

q Mantei, M. M., and Corey, TJ. “Cost/benefit

analysis for incorporating human factors in the sob- q
ware lifecycle.” Commun. ACM 31,4 (Apr. 1988),

428-439.

ml l Myers, B.A., Ed. Languages for Developing User q
Interfaces. Tones and Bartlett. Boston. Mass., 1992.

q Myers, B.A. and Rosson, M. B. Survey on user inter-

interactions . . . ja

model of the finding of usability problems. In

Human Factors in Computing Systems: Proceedings

of INTERCHIP (Amsterdam, The Netherlands,

Apr.) ACM. New York, 1993, pp. 206-213.

Nielsen, J. and Phillips, VK.. Estimating the relative

usability of two interfaces: Heuristic, formal and

empirical methods compared. In Human Factors in

Computing Systems: Proceedings of INTERCHI’93

(Amsterdam, The Netherkunis, Apr.) ACM. New

York, 1993, pp, 214-221.

Nonogaki, H., and Ueda, H. FRIEND21 Project: A

construction of 21st century human interface. In

Human Factors in Compuring Sysrems: Proceedings

of SIGCHIPI (New Orleans, La., Apr.). ACM,

New York, 1991, pp. 407-414.

Rosson, M.B., Maass, S., and Kellogg, WA.

Designing for designers: An analysis of design prac-

tices in the real world. In Human Factors in

Computing Systems: CHI+GI’87 (Toronto, Ont.,

Canada, Apr.). ACM, New York, 1987, pp. 137-

142.

Russo, I? and Boor, S. How fluent is your interface?

Designing for international users. In Human Factors

in Computing Systems: Proceedings of INTER-

CHIP3 (Amsterdam, The Netherkmds, Apr.) ACM.

New York, 1993, pp. 342-347.

Sibert, J., and Marchionini, G. “Human-computer

interaction research agendas.” Behav. Inf. Tech. 12,

2 (Mar.- Apr. 1993), 67-135.

Hewett,T.‘L, Ed. ACM SIGCHI Curricula for

Human-Computer Interaction. ACM Press, New

York 1992.

Smith, S.L., and Mosier, J.N. Guidelines for design-

ing user interface software. Tech. Rept. ESD-TR-

86-278, MITRE, Bedford, Mass., 1986.

Swartout, W, and Baizer, R The inevitable inter-

twining of specification and implementation.

Commun. ACM 25,7 (July 1982), 438-440’.

Levenson, N.G., and Turner, C.S. An investigation

of the Therac-25 accidents. IEEE Comput. 26,7

(July 1993), 18-41.

nuary 1994

Human-Computer Interaction Series
Series Editor: Ben Shneiderman, University of Maryland

Human Factors in Information Systems: The Virtual Classroom:
Emerging Theoretical Bases Learning Without Limits Via Computer Networks
Editor: Jane M. Carey, Arizona State University Starr Roxanne Hiltz. New Jersey Institute of Technology
In preparation 1994 / 320 pages (approximate) In preparation 1994 / 304 pages (approximate)
Cloth: o-89391-940-3 / $55.00 (tentative) Cloth: O-89391-928-4 / $65.00 (tentative)
Paper: l-56750-027-7 / $24.50 (tentative) Paper: l-56750-055-2 / $27.50 (tentative)

Online Help: Design and Evaluation
Thomas M. Due, Indiana University;
James E. Palmer, Apple Computer Inc.; and
Brad Mehlenbacher, North Carolina State University
Published 1993 / 272 pages
Cloth: O-89391-858-X / $55.00
Paper. O-89391-848-2 / $26.50

Public Access Systems:
Bringing Computer Power to the People
Greg Kearsley, George Washington University
In preparation 1994 / 192 pages (approximate)
Cloth: 0-89391-947-O / $45.00 (tentative)
Paper: O-89391-948-9 / $25.00 (tentative)

A Practical Guide to Usability Testing
Joseph S. Dumas and Janice C. Redish,
both, American Institutes for Research
Published 1993 /426 pages
Cloth: 0-89391-990-X / $65.00
Paper: O-89391-991-8 / $27.50

Sparks ofInnovation in Human-Computer hteractlon
Editor: Ben Shneiderman, University of Maryland
Published 1993 1400 pages
Cloth: 1-56750-079-X / $54.95
Paper: l-56750-078-1 / $24.95

%QQQaQQQ0QQa~wwQQBQ00QeewwwoQQQQwQQ0~~Q00Q0w0ow~wQ~~~ew~

Advances in Hlam;an-Coltmplater Interaction
Editors: H. Rex Hartson and Deborah Hix, both, Virginia Polytechnic Institute and State University

Volume 1 application and user interface development, designing a schohu
Contributions discuss the role of prototypes in user software electronic library, hypermedia, interface features for user supp01
engineering, a model programming environment, voice corn- and more.
munication with computers, and more. Published 1993 ; 304 pages ; Cloth: ISBN O-89391-751-6
Published 1985 ; 296 pages ; Cloth: ISBN O-89391-244-1 / $75.00 ; $39.50 prepaid (no further discount applies)
/ $75.00 ; $39.50 prepaid (no further discount applies)

Volume 4
Volume 2 Experts focus on supporting design rationales; sequential exp

ArticIesexplorehumanfactorsandartificiaIintelligence,semiotic mentation in interface design, user interface software tools; re
implications of interface design and evaluation, measuring the ognition-based, eye-movement-based, and voice-based user i
utility of application software, and more. terfaces; extending the task-artifact framework; and more.
Published 1988 ; 384 pages ; Cloth: ISBN O-89391428-2 Published 1993 / 304 pages
/ $75.00 ; $39.50 prepaid (no further discount applies) Cloth: O-89391-934-9 / $69.50

$39.50 prepaid (no further discount applies)
Volume 3

Contributors examine expanding the scope of touchscreen ap-
plications, evaluation of user interfaces, software tools for

QQ0Qw0Q0QwwQO0eOOQOQooooooQoQoo0Qo0ooooooooow0Qw0wwww~w~
0 c
0. TQ p%dace ym!m OldQq? nxQil%?f~~th~r iafQrB;peatiQnj (
Q c
0 or get a FREE cqy QfA&lQX% 1994 Bask Catabgp (
Q

355 Chestnut Street, Norwood, NJ 07648 (201) 76743450 /FAX (201) 767-6717

-.. -- -. ,_
----T---‘--.-

