
RESEARCH CONTRBUTIONS

Human Aspects
of Computing Designing for Usability:
Henry Ledgard
Editor Key Principles and

What Designers Think

JOHN D. GOULD and CLAYTON LEWIS

ABSTRACT: This article is both theoretical and empirical.
Theoretically, it describes three principles of system design
which we believe must be followed to produce a useful and
easy to use computer system. These principles are: early and
continual focus on users; empirical measurement of usage;
and iterative design whereby the system (simulated,
prototype, and real) is modified, tested, modified again,
tested again, and the cycle is repeated again and again. This
approach is contrasted to other principled design
approaches, for example, get it right the first time, reliance
on design guidelines. Empirically, the article presents data
which show that our design principles are not always
intuitive to designers; identifies the arguments which
designers often offer for not using these principles-and
answers them; and provides an example in which our
principles have been used successfully.

Any system designed for people to use should be easy
to learn (and remember], useful, that is, contain func-
tions people really need in their work, and be easy and
pleasant to use. This article is written for people who
have the responsibility and/or interest in creating com-
puter systems (or any other systems) with these charac-
teristics. In the first section of this article we briefly
mention three principles for system design which we
believe can be used to attain these goals. Our principles
may seem intuitive, but system designers do not gener-
ally recommend them, as results of surveys reported in
Section 2 show. The recommendations of actual design-
ers suggest that they may sometimes think they are
doing what we recommend when in fact they are not.
In Section 3 we contrast some of their responses with
what we have in mind to provide a fuller and clearer
description of our principles. In Section 4 we consider
why designers might not actually be using our design

0 1985 ACM 0001.0782,‘85/0300-0300 750

principles. In Section 6 we elaborate on the three prin-
ciples, showing how they form the basis for a general
methodology of design. In Section 6 we describe a suc-
cessful example of using our recommended methodol-
ogy in actual system design, IBM’s Audio Distribution
System (ADS), and the advantages that accrued as a
result.

1. THE PRINCIPLES
We recommend three principles of design.

Early Focus on Users and Tasks
First, designers must understand who the users will be.
This understanding is arrived at in part by directly
studying their cognitive, behavioral, anthropometric,
and attitudinal characteristics, and in part by studying
the nature of the work expected to be accomplished.

Empirical Measurement
Second, early in the development process, intended
users should actually use simulations and prototypes to
carry out real work, and their performance and reac-
tions should be observed, recorded, and analyzed.

Iterative Design
Third, when problems are found in user testing, as they
will be, they must be fixed. This means design must be
iterative: There must be a cycle of design, test and
measure, and redesign, repeated as often as necessary.

2. WHAT SYSTEM DESIGNERS AND
PROGRAMMERS ACTUALLY SAY
We began recommending these principles in the 1970’s.
Often the reaction is that they are obvious. Neverthe-
less, they are not usually employed in system design.
Why? We wondered whether or not these principles
were really obvious, or whether or not they just

300 Communications of the ACM March 198.5 Volume 28 Number 3

Research Contributions

seemed obvious once presented. To find out, during
1981-1982 we asked five groups of systems planners,
designers, programmers, and developers to write down
the sequence of five (or so) major steps one should go
through in developing and evaluating a new computer
system for end users. These people were attending a
human factors talk, and did this just prior to its begin-
ning. We suggested that they use an office system or
point-of-sale terminal as an example. These 447 partici-
pants provide a particularly good test of how intuitive,
obvious, regularly advocated, or regularly practiced our
design principles are, for they are among the very peo-
ple who design computer systems for people to use.
Further, since they were attending a human factors
talk, they would likely be biased to mention human
factors issues. Each person’s responses were graded in-
dependently by three or more judges (only one of
whom was a human factors person), and disagreements
were settled jointly.’ Grading was very liberal: we gave
credit for even the simplest mention relating to any one
of our four principles, regardless how impoverished or
incomplete the thought was.

Table I shows the key result. Most participants did
not mention most of our four design principles.
Twenty-six percent did not mention any of the four
principles, and another 35 percent mentioned only one.
Just 2 percent made any mention of all four. These
percentages would have been much lower had we used
a more stringent grading procedure.

As to the specific principles mentioned, 62 percent
mentioned something about early focus on users; 40
percent mentioned something about empirical meas-
urement, that is, behaviorally testing the system (or a
simulation or prototype of it) on people (regardless of
their characteristics); and 20 percent mentioned some-
thing about iterative design, that is, modifying the sys-
tem based on these results.

The intent here is not to single out as “bad folks” all
those people responsible for the creation of a system,
whom we will collectively refer to as “designers.” Prin-
ciples of design are arguable, of course. Ours are not
universal truths. Had human factors people, for exam-
ple, been asked the same questions, the percents men-
tioning each principle might not have differed from
those observed. Indeed, some other human factors peo-
ple recommend design approaches that have little in
common with what we recommend. This can be seen
in several papers in recent conference proceedings cov-
ering the human factors of system design, for example,
The Proceedings of the Human Factors Society Meetings
1301 and The Proceedings of CH183 Human Factors in Com-
puting Systems Meetings [29].

Of course these survey results cannot be assumed to
indicate what designers actually do, or would do, with
real design tasks. They do show, however, that our
principles ire not obvious (at least before they are pre-
sented), consistent with the observation that they are

’ For helping us grade these surveys. we thank Lizette Alfaro. Art Benjamin.
Steve Corsaro. and Jennifer Stolarz.

TABLE I. Summary of Six Surveys in Which 447 People Attending
Classes for Systems Planners, Programmers, Designers, and
Developers Briefly Wrote the Key Steps One Should Go Through in
Developing and Evaluating a Computer System for End Users

Pe&ent of respondents mentioning a given number of principles:
Number of principles 0 1 2 3
Respondents (%) 26 35 24 16

I 1
Percent of respondents mentioning each principle:

Early focus Empirical Iterative
on users measurement design

62 40 30

rarely applied. Our experience is that even after hear-
ing them, people often do’not understand their full
force.

3. CONTRASTS BETWEEN WHAT
WE MEAN AND WHAT WAS SAID
A closer look at the survey responses reinforces the
conclusion that these “common sense” design principles
are not fully understood by many designers, even when
they mention them. It is our experience that people
sometimes lack the ability to differentiate between
what we recommend and what they do. .

With respect to our survey results, there are instruc-
tive distinctions between comments which we gave
credit for and what we actually recommend. In many
cases, these comments may appear similar, but they dif-
fer significantly in intent, how they would be carried
out, and, presumably, in their impact. Thus, at the risk
of appearing overly harsh, we point out some of these
distinctions to clarify what we have in mind. These
distinctions are often overlooked, sometimes leading
designers to believe they are following the principles
that we recommend when in fact they are not.

Early Focus on Users
The design team should be user driven. We recommend
understanding potential users, versus “identifying,” “de-
scribing,” “ stereotyping,” and “ascertaining” them, as
respondents suggested. We recommend bringing the de-
sign team into direct contact with potential users, as
opposed to hearing or reading about them through hu-
man intermediaries, or through an “examination of
user profiles.” We recommend interviews and discus-
sions with potential users, and actual observations, by
the design team, of users on the present version of a
system. Perhaps users could try to train designers to use
an existing system, and thereby designers could learn a
lot about the users. (Occasionally, a proposed system
will be so radical that a “present system” may not exist.
We still recommend talking to the intended users, and
understanding how they go about their work and what
their problems are.) These interviews should be con-
ducted prior to system design, instead of first designing
the system and then subsequently “presenting,”
“reviewing,” and “verifying” the design with users, or
“getting users to agree” to, or to “sign off” on the design.

March 1985 Volume 28 Number 3 Communications of the ACM 301

Research Contributions

As part of understanding users, this knowledge must be
played against the tasks that users will be expected to
perform. Other disciplines have also become aware of
the absence of user involvement in design. For exam-
ple, the American Association for the Advancement of
Science and the National Science Foundation have es-
tablished a project to address the fact that too often
technologies are developed for the disabled with no
input from the disabled [31].

One way to increase the saliency and importance of
usability issues in designers’ minds is to have a panel of
expected users (e.g., secretaries) work closely with
them during early formulation stages. Almost no one
recommended this, not even for only brief periods of
time. We call this “interactive design,” and we recom-
mend that typical users (e.g., bank tellers) be used, as
opposed to a “group of a variety of experts” (e.g., super-
visors, industrial engineers, and programmers). We rec-
ommend that these potential users become part of the
design team from the very outset when their perspectives
can have the most influence, rather than using them
post hoc as part of an “analysis team (of) end user
representatives.” Another value of this approach, espe-
cially for the design of an in-house system, is that it
allows potential users to participate in the design of a
system that they will ultimately use (sometimes called
“participatory design”).

Some respondents recommended that potential users
“review, ” “sign off on,” or “a,gree” to the design before it
is coded. This can be useful, but does not have the full
shaping force on designers’ views which an earlier asso-
ciation would have had. Our notion is not merely “to
get users to agree” to a system design, which smacks of
post hoc legalese, but to create a situation in which
potential users can instill their knowledge and concern
into the design process from the very beginning.

Being concerned about the “human factors of noise
and light levels and safety” is important, but designers
must go beyond this, understanding cognitive and emo-
tional characteristics of users as they relate to a pro-
posed system.

Often designers build upon previous releases (e.g., of
computer systems, washing machines, cars) or add a
part to an existing system. Thus, there should be little
difficulty in identifying users and talking with them.
We have been told that when one is at the very earliest
stages of design in a new area, however, it may be hard
to understand who the users will be or to interact with
them. When this is so, it strengthens the arguments for
empirical measurement and iterative design.

Empirical Measurement
Here we emphasize two factors: actual behavioral
measurements of learnability and usability, and con-
ducting these experimental and empirical studies very
early in the development process. We gave credit for
any mention of a user test-whether or not it was early
or appropriately conceived, and even if it was suggested
by context alone. Several participants who received
credit for mentioning “test” seemed to have in mind a

system test rather than a user test, for example, “test for
system response, . . , swapping time.”

“Build(ing) a prototype to study it (emphasis ours)
experimentally” (e.g., to study memory access speed,
system reliability) is different from building a protytype
to study how people will use and react to it and the
training approaches and materials. It is not a question
of “using a prototype to match against user require-
ments,” but rather a question of finding out how easily
people can learn and use that prototype. The first is an
analytic question; the second is an empirical question.
“Test(ing) the (completed) system-use it by ourselves”
is good, but is not a substitute for testing it (and a series
of previous prototypes) on the actual user audience.

“Reviewing” or “demonstrating” a prototype system
for typical users and getting their reaction to it can
result in misleading conclusions. What is required is a
usability test, not a selling job. People who have devel-
oped a system think differently about its use [25], do
not make the same mistakes, and use it differently from
novices. Users should be given simple tasks to carry
out, and their performance, thoughts, and attitudes
should be recorded and analyzed.

Iterative Design
The person who wrote “make trial run of prototype and
incorporate changes” makes no reference to behavioral
evaluation and improvements. “Build prototype, code
software, write documentation, and review” does not
explicitly acknowledge the need to incorporate results
of behavioral testing into the next version of the sys-
tem. Finally, “if time permits, iterate the design . . .I’ is
not sufficient or acceptable as a design philosophy.
Even where iterative design was mentioned, many peo-
ple seemed to feel that a single iteration or revision
would be sufficient.

In answer to our question about the key steps in the
development process, some people wrote goals for a sys-
tem. Making a system “easy to use,” “user friendly,”
“easy to operate,” “simple,” “responsive,” and “flexible”
are goals, indeed very difficult goals to reach. What is
needed is a process to ultimately ensure meeting these
goals. Almost no one mentioned establishing testable
behavioral specifications (see below) early in the devel-
opment process to see if, in fact, general behavioral
goals are being met.

A Comment. One might think that it has been nit-
picking or even unfair to draw upon distinctions be-
tween comments that the respondents wrote rather
hastily and the points that we are trying to make. How-
ever, our experience is that these comments provide a
representation of how designers of all kinds of systems
(whether they are programmers of computer systems,
planners of educational curriculum, authors of text-
books, architects of buildings, builders of cars, or lec-
turers) often think and how they view ultimate users in
relation to their work. They are consistent with what
other designers of computer systems say when asked
how they think about design [22]. But does knowing
this give us greater ability to design better systems? We

302 Communications of the ACM March 1985 Volume 28 Number 3

Research Contributions

think it does because we can describe another way to
do it and ask why this other way is not followed.

4. WHY THE PRINCIPLES ARE UNDERVALUED
Why do these principles seem obvious once you hear
them, but do not seem to be recommended or followed
in practice? The survey responses indicate that these
principles are not regularly suggested and that they are
not really obvious. Our experience is that they are sel-
dom applied.

In this section we try to answer this question by
identifying five categories of reasons. First, the princi-
ples may not be worth following. Second, there is con-
fusion with similar but critically different ideas. Third,
the value of interaction with users is misestimated.
Fourth, competing approaches make more sense. Fifth,
the principles are impractical. We see weaknesses in
these reasons or objections, and we suggest ways of
addressing them.

Not Worth Following
As we said earlier, principles of design are arguable,
including these, and a variety of other design ap-
proaches have been recommended. Some designers, no
doubt, understand our recommendations but question
their value. Such objections will be resolved one way
or the other as the recommendations are more fully
tested in practice.

Confusion with Similar but Critically Different Ideas
It is our experience that designers often have difficulty
differentiating between what we recommend and simi-
lar but critically different ideas. The survey results are
consistent with this experience. Sometimes designers
believe they are following what we recommend when
in fact they are not. Sometimes designers confuse the
intention to carry out user testing with the testing it-
self.

We hope these problems will resolve themselves over
time. If designers have more interaction with users, and
if they carry out more empirical evaluations of their
work, we expect the value of these approaches, and
their relationship to other methods, to become clearer.

The Value of Interaction with Users is Misestimated

User Diversity Is Underestimated. Because most de-
signers have only limited contact with users (and this is
often centered on topics of the designers own expertise
and not that of the users), they simply do not realize
how widely users differ, and, especially, how different
many users are from most designers. If dashing off a
few lines of code is trivial for a designer, then that
designer is not likely to imagine that this can be ex-
tremely difficult for someone else. When users do have
trouble, designers are sometimes tempted to think they
are “stupid.” It is difficult to give fair weight to the
years of training and experience that underlie one’s
own ability. But more important, it is almost impossible
to think about whether or not someone else will haire
trouble if you never encounter any yourself. In observ-

ing complete novices learning to use text editors [25] or
message systems [19], we have often been amazed as
they encounter major problems that we did not antici-
pate, or when problems that seemed simple to us were
impossible for them to recover from.

User Diversity Is Overestimated. Sometimes we are
told that people are so different that it makes no sense
to conduct tests with only a few people. One would
have to test hundreds of people and then the result
would be so variable as to be useless. It is true that
testing only a small sample, as is often necessary for
practical reasons, cannot reveal all the problems that
will arise with a design. But it is much better to iden-
tify some of the problems that some users will have
than not to identify any. Further, our experience is that
problems are not as idiosyncractic as is sometimes
thought. The same problem, even a completely unanti-
cipated one, often crops up for user after user.

Belief That Users Do Not Know What They Need.
This objection points up a genuine problem: Getting
useful design information from prospective users is not
just a matter of asking. Many users have never consid-
ered alternate or improved ways of performing their
tasks and are unaware of the options available for a
new design. Further, in trying to communicate, design-
ers may unwittingly intimidate users, and users may
unfortunately become unresponsive.

One way around this is to present new ideas in a way
that makes it easy for users to relate them to their
concerns. One approach, used with a text-editing sys-
tem at Wang Laboratories (personal commur)ication,
1980), is to write a user manual and get reactions to it,
as the first stage in design. Another method is to con-
struct detailed scenarios showing exactly how key tasks
would be performed with the new system, as was done
for IBM’s ADS [19]. Another approach is to simulate the
user interface of a proposed system [21, 231. These ap-
proaches are valuable even if no user reaction is
sought: It is extremely difficult for anybody even its
own designers, to understand an interface proposal,
without this level of description.

Putting the design in intelligible form is not the only
difficulty in getting user reaction. Users may endorse a
proposal uncritically, presuming that the technical “ex-
perts” know more than they do about their needs. In
the course of extended give-and-take with designers,
users may come to know too much: They may under-
stand the technical issues so well that they can no
longer detect the difficulties in comprehension that
others users, who do not have the benefit of weeks of
dialogue with the designers, will face.

The effect of these problems is that interacting with
users during design cannot in itself ensure a good de-
sign. But at least some design issues will be defined and
dealt with sooner and more effectively if user knowl-
edge is brought to bear from the start.

Belief That My Job Does Not Require It or Permit It.
Sometimes organizational arrangements isolate design-
ers from contact with users, or place the responsibility

March 1985 Volume 28 Number 3 Communications of the ACM 303

Reseal vh Contributions

for usability entirely elsewhere, with no role for others.
Designers find themselves preoccupied with meeting a
schedule for their individual system ingredient. There
is no time for contact with users until their work is
finished-which never quite happens. A rigid develop-
ment process leaves no room for new approaches.

We have been told by a designer that it is sometimes
difficult to get customers to commit productive users to
spend sufficient time interacting on the design of a fu-
ture system. When this is the case, designers can use
techniques mentioned in thi.s article that may require
less time, for example, get reactions to an early user
manual, help-line service, o:r printed scenarios of how
the user interface might work.

Competitive necessity will eventually break down
these obstacles and traditions. Good user-oriented sys-
tems cannot be built from local optimization of individ-
ual system ingredients. In the meantime, other ways to
do the needed work can often be found. Small-scale
usability evaluations can often be carried out without
requiring much additional resource. Marketing or plan-
ning people are often eager to have development people
participate in customer visits where their technical
skills can be very helpful.

Competing Approaches

Belief in the Power of Reason. If system design were
fundamentally a rational analysis of how a task should
be done, then there would be no need to involve users.
Why muddy the waters by getting information about
existing, and probably irrational, practices? There are
two problems with rational analysis as the sole basis of
design. First, it leaves things out: Rational analysis does
not tell you what you have to analyze. Here is an illus-
tration. Some designers have been puzzled that word
processing systems have not driven out the typewriter.
Why do many offices have a typewriter and a word
processor side by side? Does a word processor not han-
dle all “document creation”? Just thinking logically
about document creation is unlikely to reveal the key
facts. But a few minutes of observation of real office
work shows some of the things that document creation
leaves out. Filling in forms is much easier with a type-
writer. For very short documents, such as buck slips or
telephone messages, the overhead of a typical word
processor is unacceptable. One cannot discover the ex-
istence of these critical cases by armchair reflection on
office work.

A second problem with relying only on reason is that
systems almost always have to interact with preexisting
work methods, and mismatc:hes can be major problems.
Even if a new system is intended to entirely replace
former methods, there is still the problem of relating
peoples’ comprehension of the new ways to their estab-
lished habits of thought. The problems surrounding this
process are not subject to a priori rational analysis, but
must be explored empirically, that is, by having actual
users try out the new system under realistic conditions.
Listening to users’ comments is a good way to do this.

Rational analysis is, of course, important, for without
it we are unlikely to create new innovative systems.
Analytic approaches should be used when they are ap-
plicable, but they cannot be seen as a substitute for
empirical methods.

Belief That Design Guidelines Should Be Sufficient.
There is no handbook of operating characteristics for
the human mind. Guidelines for user interface design
do exist (e.g., [g]), and they can be useful. Certainly, for
many designers, guidelines can help get the first ver-
sion of a prototype system closer to the final desired
version than if they were not used. However, they pro-
vide only general constraints on design. No matter how
conscientious a designer is in finding and following this
distilled wisdom, the resulting design may be very good
or very bad.

One limitation of guidelines is that they cannot deal
with choices that are highly dependent on context, as
many of the important choices in interface design are.
For example, a guideline cannot recommend that spe-
cial purpose keys be used instead of typed commands
because the choice depends on whether or not users
are touch typists, whether or not it is possible for the
system to distinguish commands from other entries if
they are typed, whether or not the command set is
extensible, and many other aspects of the situation. Ex-
isting guidelines are often based on informed opinion
rather than data or established principles. Very few
design choices have been investigated in a controlled
way. Research cannot solve either of these problems in
the foreseeable future.

Cognitive psychologists agree that human perform-
ance adapts strongly to the details of the task environ-
ment. We do not understand this adaptation well
enough to predict the effects of most design choices in
any one given situation, let alone form general conclu-
sions about them. The same ignorance argues against
conducting experiments to validate existing guidelines
about which there is doubt. Feasible experiments could
only investigate a choice in a few contexts, probably
not increasing our confidence in generalizing about it
very much. Psychology is not close to being able to
develop significantly improved guidelines to overcome
these limitations. Human factors can provide a process
by which usable and useful systems can be designed,
but cannot provide design guidelines in enough detail
to determine how a system should ultimately appear to
users. We feel, at present, that guidelines should be
viewed as an informal collection of suggetions, rather
than as distilled science. Designers will have to make
many choices on their own, and be prepared to test
their work empirically.

Belief That Good Design Means Getting It Right the
First Time. “Getting it right the first time” seems like
a laudable goal, and is, in fact, an alternative design
philosophy to our own: but experience shows it is not
achievable in user interface design. Certainly careful
design work pays off, and the need to iterate is not a
license to be sloppy. Assuming that iteration will not be

304 Communications of the ACM March 1985 Volume 28 Number 3

Research Contributions

needed, when laying out a schedule and choosing im-
plementation methods, is asking for disaster in user in-
terface design. Even the “zero defects” approach, devel-
oped by Crosby [6] for general quality control, advo-
cates the need for evaluative testing and empirical
measurement. It does not simply assert that one can,
from the outset, create a design for zero defects.

“Getting it right the first time” plays a very different
role in software design which does not involve user
interfaces than it does in user interface design. This
may explain, in part, the reluctance of designers to,
relinquish it as a fundamental aim. In the design of a
compiler module, for example, the exact behavior of
the code is or should be open to rational analysis. Even
those factors which cannot be predicted exactly, such
as frequencies of data with particular characteristics,
may be amenable to statistical treatment. The choice of
algorithms can and should be anchored securely in a
reliable analysis of the data, the transformations to be
carried out, and the performance characteristics of the
system. Good design in this context is highly analytic,
and emphasizes careful planning. Designers know this.,

Adding a human interface to the system disrupts this
picture fundamentally. A coprocessor of largely unpre-
dictable behavior (i.e., a human user) has been added,
and the system’s algorithms have to mesh with it.
There is no data sheet on this coprocessor, so one is
forced to abandon the idea that one can design one’s
algorithms from first principles. An empirical approach
is essential. The involvement of human users escalates
the need for an empirical approach well above the
usual requirements for testing to make sure a system
works.

When large diverse groups are involved in develop-
ing a system, we have observed a practice of “freezing
the user interface” early in the development process
(even prior to coding it). Apparently this reflects the
need to have some aspect of the system fixed or stable
as the various groups then proceed somewhat indepen-
dently with their own work. But the user interface is
exactly that part of the system which should be open to
change. The best this approach can achieve is that a
system can get programmed in an error-free manner, not
that the resulting interface will be of high quality. It is
impossible to design the system right the first time be-
cause this is based on the assumption of a perfect fore-
cast of the best user interface-something which can
only be determined empirically. Further, fixing the
user interface early assumes nothing will be learned
over the next two years, or so, of development.

When one is an outside contractor (rather than in an
internal system development organization), it is often
difficult to get a customer to sign a contract that in-
cludes the flexibility required in iterative design. There
is, typically, insistence, we are told, on a two-stage,
“preliminary design” and “final design” hierarchy, with
schedule rigidity that often precludes proper accommo-
dation of usability tests results. Ignoring the need for
iterative design is perhaps even more disastrous here
since geographic remoteness may further reduce re-

quired communication and observations needed to at-
tain good usability.

Our system design philosophy is neutral vis-a-vis
some other well-known strategies for program design,
for example, top-down design [7], top-down testing, or
structured programming [8]. Yourdon and Constantine
[35] have reviewed these and other programming de-
sign strategies. The small group aspect of chief pro-
grammer teams [l] is important, we believe, in provid-
ing consistency and simplicity in overall system usage.

Impractical

Belief That the Development Process Will Be
Lengthened. In a competitive world, products are al-
ways developed under time pressure. Schedules are
critical. Designers sometimes fear that their schedules
will not be met if behavioral testing is done. Will the
development process not be lengthened by creating a
prototype? Will the development process not be
lengthened further by doing user tests with it? Will the
development process not be lengthened even further by
redesigning on the basis of the user results? We feel
that these questions reflect two underlying assump-
tions. The first is that usability work must be added to
the end of the development cycle, as opposed to over-
lapped with it. The second is that responding to tests
must be time consuming.

With respect to this first assumption, one can do user
testing before a system is built, and continue this work
throughout the development process. One can create
paper and pencil tasks that test critical features of the
interface such as the syntax of commands. IBM’s
“Query-by-Example” [36] was evaluated by asking
users to write down the queries they would construct
to answer questions given to them in English [88]. This
was done before a single line of code was written. It
was therefore done without the benefit of system feed-
back [33] which was studied in later experiments [3, 51.
More comprehensive testing can be done by construct-
ing a simulated system. For example Gould, Conti, and
Hovanyecz [21] did extensive testing of a “listening
typewriter,” a device that would use speech recognition
to give real-time visual feedback during dictation, by
using a human typist in the computer feedback loop.
Kelley [23] used a computerized simulation of a calen-
daring system in which the experimenter could invisi-
bly enter the user-system dialogue whenever the com-
puterized system would not give an appropriate re-
sponse. Here, again, both of these simulations were
done before a line of code was written for the real
systems. Once a running prototype exists, experimental
tests with real users can be conducted, followed by
empirical (field) studies of training, user interface, and
reading materials used together.

It is our personal experience and observation that
building simulated or informal prototypes, rather than
delaying or lengthening system development, actually
helps get a new project off the ground, gives it some-
thing tangible for others to see, and stimulates thought
and progress.

March 1985 Volume 28 Number 3 Communications of the ACM 305

Research Contributions

We have been told that with some new systems the
main issue is sometimes one of technical feasibility or
capability of the technology to perform in a certain
way. “How can this be explored without building a
box?” we have been asked. The answer is that is ex-
actly what was done in the Thomas and Gould [33], the
Gould, Conti, and Hovanyecz [Zl], and the Kelley [23]
simulation studies. While some aspects of new technol-
ogy may be difficult to simulate we have never encoun-
tered a design problem in which at least some impor-
tant aspects could not be uslefully simulated.

With respect to the second assumption, that respond-
ing to the user test results must be time consuming and
expensive, it is possible to build a system so that one
can do this quickly and easily. The implementation is
structured so that the user interface can be changed
without changing the implementation of underlying
services. In a sense, the system becomes its own proto-
type, in that it is easy to construct and evaluate alterna-
tive designs. IBM’s ADS, discussed in more detail be-
low, has this structure.

Even when these approaches are taken, there is no
denying that user testing still has a price. It is nowhere
near as high as is commonly supposed, however, and it
is a mistake to imagine that one can save by not paying
this price. User testing will bappen anyway: If it is not
done in the developer’s lab, it will be done in the cus-
tomer’s office. Brooks [4] has pointed out that everyone
builds a prototype. The only question is whether or not,
in the case of vendors, they also market it as a product,
or in the case of in-house development, they give it to
their users. The price iS poor quality, extra (unantici-
pated) customer expense, and extra (and unanticipated)
vendor costs. Changes that must be made after the
product is delivered are, of course, much more expen-
sive than those made even late in development. They
must be done piecemeal, and under pore constraints of
compatibility, in that changes have to be minimized to
avoid disrupting users. Fixes are likely to be superficial,
and quality will continue to suffer. Heavy reliance on
initial customer feedback, rather than early empirical
simulations, prevents innovation because too many
constraints then exist, making fresh substantially differ-
ent approaches impossible.

Belief That Iteration Is Just Expensive Fine-Tuning.
Our philosophy is not just a trivial expensive matter of
“fine-tuning,” but a basic design philosophy to be con-
trasted with other principled design philosophies. An
iterative design philosophy may seem expensive, but
with the present state of understanding about user in-
terface design, it is the only way to ensure excellent
systems. The three principles we outlined can be ex-
tended and coordinated to form an overall approach to
user interface development, as is partially done in the
next section.

Belief in the Power of Techrrology to Succeed. We
have been told that technical people have a lot of faith
in the “power of technology” to succeed. People will
buy it in spite of the user interface. This has been true

at the high end of computer systems, and was true in
the case of the automobile industry. But as the Ameri-
can automobile industry found out, other manufac-
turers will make the necessary accommodations to
users. We belive the same thing will happen in the
computer industry. Just because there is a speech rec-
ognition system, a touch screen, a wireless terminal, or
a picture phone is no longer a guarantee that these will
succeed. Increasingly, with computer systems the prod-
uct is the user interface. This reinforces the points we
are trying to make. More and better students are be-
coming involved with the human factors of computer
systems, and they will be developing new methodolo-
gies and providing a stream of findings on usability,
which may very well exert powerful effects in the mar-
ketplace.

5. AN ELABORATION OF THE PRINCIPLES
To carry out our suggestions, we roughly divide the
activities required in explaining our recommended
principles into an initial design phase and an iterative
development phase, although there is no sharp dividing
line separating them.

Initial Design Phase

Preliminary Specification of the User Interface. This is
only one of several activities that need to be attacked
early. Here are others.

Collect Critical Information About Users. Some of
what is needed, such as literacy level or how long users
stay at one job [both of which affect training require-
ments), can sometimes be gathered second-hand, from
surveys or consultants. But direct contact with poten-
tial users is essential to flesh out the basics. Reluctance
or willingness on the part of the users to read manuals,
tolerance for delay or effort, and expectations about
what a new system should provide are examples of
factors that are unlikely to come through in second-
hand descriptions of users but which designers need a
feel for. Perhaps more important, one does not know
what one needs to know about a user until one sees the
user in person. These contacts are almost always full of
surprises.

Sometimes there is a (understandable) tendency for
designers to want to look up in a book what the charac-
teristics of a class of users (e.g., bank tellers) are (an
extension of the guidelines approach), and build a sys-
tem from these. We have tried to find an example of a
system whose user set is so narrow and so well speci-
fied that general user characteristics, such as reading
level, age, and so forth, would be an adequate basis for
design. We have not found any. To the extent that the
scope of users and tasks becomes broader, understand-
ing the user becomes all of psychology (cognitive, be-
havioral, anthropometric, attitudinal, etc. characteris-
tics), and general descriptive data will be of even less
value.

As noted earlier, one of the surprises may be how
difficult seemingly easy operations may really be for
users. Direct contact with users, both in this phase and

306 Communications of fhe ACM March 1985 Volume 28 Number 3

in later behavioral testing, can make designers aware of
just where these difficulties are cropping up.

There is an analogy between the sort of insight into
users and their needs that a designer must have and
the sort of insight into the needs of a particular indus-
try that a software developer must have. Just as
“insider” knowledge is essential to develop really useful
software for banking, say, or insurance applications, so
an “inside” view of user requirements is essential to
create a superior user interface. For most designers the
only way to get this inside view is by close consultation
with users.

Such consultation is greatly facilitated if the users
can see and react to a real “users’-eye-view” of the
proposed system. This can be done by preparing a users
manual for review, as has been done at Wang for a
word processor (personal communication, 1980), by pre-
senting detailed usage scenarios, as was done for ADS
[19], or possibly by presenting a description of how a
user would interact with the system, as was done at
Apple for the Lisa computer system [34]. Even if it is
not used in user consultations, preparing such a users
view can be helpful in focusing design energy on inter-
face issues. It can also form the basis for behavioral
specifications and tests.

Develop Behavioral Goals. The plan for a new system
always includes performance and capacity targets for
the hardware and software, for example, memory size
and access rates, and calculation times. These need to
be supplemented by targets which specify how well the
user must be able to perform using the system. For
example, one might specify that 80 percent of a sample
of representative users must be able to master specified
basic operations on a word processor in half an hour.
With such goals in place it is possible to consider
whether or not proposed design features or design
changes will contribute to the goals. Without such
goals, it is easy for such issues as implementation con-
venience or memory requirements to dominate the de-
sign to the detriment of usability. Thus, when viewed
properly, a major reason for behavioral targets is that
they provide a management tool to assure that system
development proceeds properly.

Behavioral goals should be testable, that is, there
should be a clear procedure for determining whether or
not a design meets the goals. This will mean that the
statement of the goals must cover at least the following
points.

1. A description of the intended users must be given,
and the experimental participants to be used to repre-
sent these users in tests should be agreed upon: for
example, typists supplied by temporary employment
agencies in Los Angeles (30 percent of whom have Eng-
lish as a second language].

2. The tasks to be performed, and the circumstances
in which they should be performed, must be given. For
example, a test scenario might specify that the partici-
pant will be given a manuscript and asked to use a
prototype copier to make five copies on legal size paper

Research Contributions

(not presently in the copier), collated and stapled. No
assistance would be available except a telephone “hot
line.”

3. The measurements of interest, such as learning
time, errors, number of requests for help, or attitude,
and the criterion values to be achieved for each, must
be given. Most systems are improvements on older
ones, and in these cases it is relatively easy to specify
the behavioral criteria, for example, learning time. But
it is harder to establish the appropriate values these
criteria must take on, and this may have to be done
iteratively. In the case of an altogether new system,
where the functions have not previously been imple-
mented, specifying the criteria correctly the first time
may also be hard, and iteration will be required.

Any specifications, including behavioral goals, influ-
ence the design process in complicated ways. Rigid en-
forcement of specifications is often impossible, but even
when they are violated, specifications help to focus de-
sign attention and effort in the right places. The process
of creating and agreeing on a good set of specifications
can be valuable in itself. This process can help clarify
the validity of various measures of usability.

Organize the Work. The user interface of a system is a
complex entity with diverse parts. The software, the
workstation from which the software is operated, the
training procedure (if any) in which users participate,
the referepce manuals or materials, all work or fail to
work together to create the conception with which the
user ultimately deals. Unfortunately these interacting
pieces are usually designed separately. Definers, design-
ers, implementers, application writers, and manual
writers constitute large groups in themselves, and are
often separated by geography or organization. They of-
ten become part of the development process at different
times, and thus must accept what earlier participants
have already solidified. The picture can be even worse
when significant work, such as writing user manuals, is
vended out to third parties. It appears that superior
quality can be attained only when the entire user inter-
face, including software, manuals, etc., can be designed
by a single group, in a way that reflects users’ needs,
and then evaluated and tuned as an integrated whole.
This approach was followed with ADS, as discussed
below.

Iterative Development Phase
With testable behavioral goals, and ready access to user
feedback, continuous evaluation and modification of
the interface can be undertaken. But it will only be
feasible if an implementation strategy that permits
early testing of design features and cheap modification
of the evolving implementation has been planned. Such
a strategy has to include fast flexible prototyping and
highly modular implementation. These virtues can be
combined: The ADS system was essentially self-proto-
typing, in that the final implementation, in fact, has the
structure of a prototyping tool, with table-driven inter-
face specification. This approach solved two problems
often associated with prototyping. First, little work was

March 1985 Volume 28 Number 3 Communications of the ACM 307

Research Contributions

invested in a separate prototyping system that was then
discarded. Second, once design features were proto-
typed there was no further work needed to incorporate
them in the final implementation since the prototype
and final implementation were the same.

Experience shows that iterative design should not be
thought of as a luxury tuniag method that puts finish-
ing touches on a design (at great expense]. Rather, it is
a way of confronting the reality of unpredictable user
needs and behaviors that can lead to sweeping and fun-
damental changes in a design. User testing will often
show that even carefully thought out design ideas are
simply inadequate. This means that the flexibility of
the implementation approach has to extend as far into
the system as possible. It also means that designers
have to be prepared for evaluation results that dictate
radical change, and must have the commitment to
abandon old ideas and pursue new ones. Prototype test-
ing can identify system problems with reliability and
responsiveness. These two factors are absolutely neces-
sary for a good user interface and interact with other
usability factors.

We have already mentioned methods to determine
whether or not behavioral targets are being met. When
behavioral targets are not being met, how does one find
a remedy? This is usually a very tough problem. Often
user comments are the best source of ideas since they
may reveal why particular terrors are occurring. For
example, user comments can quickly show that partic-
ular wording on a screen or in a manual is unfamiliar
and is being misinterpreted. It may be desirable to col-
lect comments while the user is working with the sys-
tem since impressions given after a task is complete are
often sketchy and may gloss over difficulties that were
eventually overcome. The “thinking-aloud” technique,
borrowed from cognitive psychology [lo, 24, 271 can be
useful in such cases. Of course such methods may not
be appropriate in assessing whether or not a behavioral
goal is being met since the process of collecting com-
ments may interfere with or artificially improve users’
performance with the system. But the problem of deter-
mining whether or not behavioral goals are being met is
different from deciding why they are not being met, and
what to do about it. Different methods are needed for
these two aspects of the evaluation process.

A Comment. Some readers may feel that our recom-
mendations are “not science.” They may be disap-
pointed that we do not, for example, enthusiastically
describe recent developments in cognitive psychology
as being able to predict design details for a new user
interface or for user reading material. However, design
by its very nature is not just science, but also involves
engineering, history and custom, art, and invention.
Our recommended approach is the best way to develop
the scientific aspects of the human factors of system
design. This is so for two reasons. First, the methodolo-
gies available are sufficiently rigorous and conform to
the traditional scientific approach. Within the frame-
work we outline, the methodologies range from the
pure observation, analysis, and hypothesis testing of

ethologists to psychophysics so precise that no man-
made system can measure as accurately. Second, the
approach we recommend ensures that real situations
and problems will be studied, in their full complexity.
This enables talented designers, human factors people,
and management to identify and concentrate on the
critical problems that must be solved to produce supe-
rior usability.

6. A CASE STUDY-IBM’S
AUDIO DISTRIBUTION SYSTEM
As compared to the methods of science, much less is
known and written about the processes of technology
development [ll]. Generally, the development process
for most systems is (understandably) kept confidential,
or at least not often written about. The exceptions, such
as the interviews with designers of Lisa [26] can be
very instructive. We offer here a short summary of the
development of the IBM Audio Distribution System,
called ADS, emphasizing the action of the design prin-
ciples we have presented. In practice, actual develop-
ment of a system follows any design philosophy only
approximately, regardless of how formal or precisely
mandated it is. Goals evolve as new ways of doing
things are figured out and new useful functions are
identified. ADS was no exception.

ADS is a computer-based message system that allows
users to send and receive messages using a touch-tone
phone as a terminal [lg, 201. Such functions as review-
ing previously received messages, creating and using
distribution lists, inquiring as to whether or not a mes-
sage has been heard by the recipient, and changing
passwords are all performed by choices and commands
entered on the pushbutton telephone. ADS was in-
tended to be used by people with no other exposure to
computers, with minimal training. Ease of learning and
use were paramount among design goals. Evidence to
date indicates that it is very easy to learn. Customers
report new users are often able to learn ADS with no
training. The principles presented in this article par-
tially evolved from the experience gained in meeting
these goals.

Early Focus on Users
The target population was identified very early: man-
agers and professional people. It was known that these
people typically do not use computers themselves and
do not have computer terminals. They travel fre-
quently, and work in many different places, so access to
the system away from the office is important. These
considerations led to an emphasis on the use of an
ordinary pushbutton telephone as a terminal, even
though it was clear that restricted keypad and lack of
visual output would be tough constraints.

It was also recognized that these people would be
discretionary users, in that they would not be required
to use ADS, but would only use it if it seemed suffi-
ciently easy and useful to do so. They indicated that
they would spend little time or effort learning a system.
This led to very great effort directed toward making the

308 Communications of the ACM March 1985 Volume 28 Number 3

Research Contributions

user interface as self-explanatory as possible, and
matching the functions as closely as possible to user
needs.

The initial set of functions designed into ADS were
quite different from those which eventually emerged
[19, 201. Initially the system was thought of mainly as
an enhanced dictation system, in which dictated
memos could be filed and retrieved, and routed to a
transcription center. Secondarily, ADS was initially
thought of as an “electronic mail” communication sys-
tem for relatively brief spoken messages. Laboratory ex-
periments began to indicate that dictating was not as
efficient a composition system as originally thought,
and that speaking was a potentially superior composi-
tion method [12, 13, 15, 16, 19, 201. Only after a proto-
type was in use was it determined that the spoken
message communication features of the system were
the really useful ones, however. The dictation tran-
scription feature was then deemphasized.

This example illustrates several points we have tried
to make. First, initial interaction with users did not
start as early with ADS as we would now suggest it
should. As a result, the first command language was
cumbersome. Second, even when early interactions
with users did take place, they often could not say
what would be useful new functions for them. Almost
no one envisioned how useful noninteractive voice
communication would be. Third, giving potential users
simulations and prototypes to work with enhanced the
quality of feedback they gave. Empirical prototype
studies identified, for example, which functions were
actually used. Fourth, the architecture (or programming
technology), and the designers’ motivation, was flexible
enough to allow iterative design.

The prototype system led to extensive interaction be-
tween users and designers. Users were free with sug-
gestions about what they did not like (such as pushing a
lot of keys to accomplish basic functions, having to re-
member the digits for specific commands, for example,
71 to Record, the necessity to read documentation or
spend time for training, and what they thought should
be added). Having a Pending Message Box to remind
the sender and recipient that an action is needed was
based on a user suggestion.

Empirical Measurement
Throughout the development of the system, a great
many different forms of user testing were used. Most
concentrated on the ability or inability of test users to
learn to perform a given set of functions with a given
form of training or prompting. Some tests used simple
paper-and-pencil methods, in which users had to write
down the keys they would use to perform a task. Other
tests involved watching users use a keypad, writing
down and video-taping what they did; still others in-
volved memorization and recall studies of various com-
mand possibilities; laboratory experiments on spoken
message quality [28]; and experiments on impression
formation [32]. Studies of new users almost always
evaluated a combination of training, reading materials,

and user interface. Versions of prototype systems in
actual usage were demonstrated to visitors and at tech-
nical meetings for several years. This provided useful
feedback. This work was carried out by Stephen Boies,
John Conti, John Gould, Nancy Grischkowsky, Don Nix,
and John Thomas. These tests led directly to many
changes in the wording of messages, the organization of
commands, the style of training, and other aspects of
the system [19].

Later, a simple but flexible simulation tool in which
a subset of keys on a computer terminal modeled the
pushbutton telephone keypad was developed. Prompts
and messages were automatically shown on a screen
where an experimenter could read them to the test
user. The action of the simulator was easily changed
without programming. The experimenter could edit a
set of tables that determined what would happen when
a given key was pressed in a given state of the system.
These tables were designed and implemented by Ste-
phen Boies and John Richards, and an illustration is
given in Table II.

Iterative Design
This simulator proved so useful that it was eventually
incorporated as the actual user interface of the system
itself. That is, the operation of the ADS system now
marketed by IBM is controlled by tables identical to
those used in “programming” the simulator. This means
that sweeping changes to the user interface of the ac-
tual system can be made with no reprogramming what-
soever, simply by editing the control tables.

Once in place, this feature of the system was ex-
ploited to the full. When the system was prepared for
release as an IBM product, user testing was continued
until very late in the development cycle since changes
were so easy to incorporate. It proved possible to in-
clude three separate user interfaces, designed for differ-
ent user classes, in the product, since specifying an
interface was so well isolated from the rest of the prod-
uct.

What were some of the changes that all this flexibil-
ity made possible? One is a good example of the small
but critical corrections that are so hard to spot in ad-
vance of testing. In one well-tested version, R (the 7-
key] was used for RECORD and T (the a-key) was used
for TRANSMITting a message. This was satisfactory,
and was in general use for over a year. As part of a
major redesign to add new functions, it was felt that S
(the T-key) for SEND and T (the a-key) for TALK pro-
vided a more natural-sounding command set. What
could be more natural? Several months of informal user
testing revealed a problem: When using this new com-
mand set users tried to SEND a message before TALK-
ing it. (In the other case, users almost never tried to
TRANSMIT a message before RECORDing it.) “I want to
SEND a message to Smith,” a user would reason. It was
not clear that they had to TALK a message before
SENDing it because SEND seemed to mean the whole
action of composing and transmitting a message, at least
for many novice users. Changing S for SEND to T for

March 1985 Volume 28 Number 3 Communications of the ACM 309

Research Contributions

TNEUT HEAD

Ei
LINE
LINE
LINE
LINE
LINE
LINE
LlNE
LINE
LINE
LINE
LINE
LINE
LINE

TABLE II. An Example of a “Standard Table”

LVLI + LVLO, TNEUT, 0.0,3000 NEUTRAL MODE
0, 0, NONE, EMPTY, 0,O NOT USED IN THIS TABLE
1 , 0, NONE, EMP?Y, 0,6 NOT USED IN THIS TABLE
2,0, COSLINE, TCUST, 0, 12 CUSTOMIZE MODE
3,0, NONE, TDISC, 0,O FAST DISCONNECT
4.0, COSLINE, XGET, 0,O GET MODE
$0, COSUNE, XLIST, 0,O LISTEN AND EDIT
6,O. NONE, EMPTY, 0,6 UNDEFINED kEY
7.0, COSLINE, XRECD, 0.0 RECORD MODE
6,0, COSLINE, XXMIT, 0,O TRANSMIT MODE
9,0, NONE, EMPTY, 0,O NOT USED IN THIS TABLE
*, 0, NONE, EMPTY, 0,5 STAYS IN NEUTRAL: OK
OPER, 0, NONE, EMPTY, 0,6 NOT USED IN THIS TABLE
#, 0, NONE, QNEUT, 0,O TELL USER WHAT TO DO
DELAY, 0, NONE, ONEUf, 0,O TELL USER WHAT TO DO
EOM, 0, NONE, EMPTY, 0,O NOT USED IhJ THIS TABLE

Note: Lines beginning with LINE 1 through LINE # correspond to the keys on a pushbutton telephone. If a
user presses one of these keys, the corresponding LINE is executed in the table. For example, if a user
presses 2 (i.e., the C-key) to customize his or her profile, LINE 2 is executed. That is, system message 12 is
played out (“Customize”), a routine called COSLINE is called to initialize some variables, and control is
transferred to a table called TCUST. If the user fails to push any key within 30 seconds (Le., the 3000
centisecon~ds specified in HEAD) after arriving in this table, then LINE DELAY is executed. This will transfer
control to a table called QNELJT which in turn will select a helpful prompt for the user, based on what is
appropriate for the user to do

TRANSMIT fixed the problem. Note that TRANSMIT is
a less common, more technical term: Guidelines would
probably rule against it (although some recent evidence
is consistent with it; [z]). But the empirical method
made the right call over our rational analysis.

Another example had to do with users making modi-
fications to a message they were listening to. ADS asked
users whether or not they wanted to add a comment at
the beginning of the message, add a comment where
they had stopped listening, or erase the message and
start over. Some new users had trouble with this con-
cept. For example, the wording “add a comment . . .”
made sense if they were listening to a message from
someone else, but not if they were listening to a mes-
sage they were composing themselves. On the other
hand, “. . . start over” made sense for messages they
were composing themselves. Yet all three alternatives
were important for both cases, for example, users
needed to “insert” in their own messages (rather than
“annotate” or “comment”). After testing many alterna-
tive wordings on many first-time users (which gave in-
sight into the problem), ADS tables were “repro-
grammed” to play out a slightly different prompt de-
pending on whether users were listening to a message
from someone else or one that they had composed
themselves. This was easy to do at the level of the
tables but required a fundarnental algorithm modifica-
tion so that ADS would distinguish between these two
types of messages.

In the earliest stages of ADS, there were no specific
behavioral goals. It was intended that the system be
“easy to use,” “ useful,” etc. We had not yet developed
the principled type of thinking outlined in this article.
With time, however, one be:havioral goal was to create

a system which required no user training. For several
years, informal tests on possible user interface changes
were motivated by this goal, and each major prototype
revision reflected this goal The command language was
reorganized and emphasis on documentation was modi-
fied greatly. Informal feedback from customers and
users indicates that a majority of new users learn ADS
with no training, which is radically different from what
was found for the earliest ADS prototype and for new
users of most computer systems today.

Beyond ADS
It may seem that ADS is an unfair example of the appli-
cation of our design ideas. The very simple terminal,
with limited input and output, lent itself very well to
table-driven design, with the flexibility that it provides.
It was developed by a small group of people, several of
whom had behavioral expertise. Could the same ap-
proaches work with a more typical system?

We believe they can. The key lesson of the ADS ex-
perience is not the implementation strategy-that is the
secondary lesson. The most important lesson is the un-
predictability of good design: The large number of fea-
tures of the final design that were not and could not
have been anticipated in the initial design. These fea-
tures were only discovered and incorporated because of
the focus on users and user testing in the design proc-
ess.

The implementation strategy played a supporting
role: It made it possible to respond to user feedback
quickly and cheaply. Further, it gave real control of the
user interface to the people who had responsibility for
usability. No longer did they have to get systems ex-
perts to devote extensive time to making simple

310 Communications of the ACM March 1985 Volume 28 Number 3

Research Contributions

changes in the user interface. While table-driven imple-
mentation may not be possible in some cases, the un-
derlying idea can still be used. One approach is to iden-
tify the system functions and a set of high-level inter-
face services that control such things as the positioning
of information on a screen, collecting user responses,
and the like. All these are embodied in a set of routines
or macros. The interface designer can now program the
interface at a high level and make changes freely with-
out reprogramming any of the underlying services.

14.

15.

16.

17.

16.

19.

7. CONCLUSIONS
Computer systems are hard for most people to learn
and use today. We believe that if systems were de-
signed using the three principles we have mentioned,
they would receive much higher usability marks. Sur-
vey data show that these principles (early focus on
users, empirical measurement, and iterative design) are
not intuitive. There is one case history, and parts of
others, which indicate that the principles lead to usable
systems.

prmclpal support office system-The speech filing system approach.
ACM Trans. Office Inform. Sysf. I, 4 (1983), 273-298.

20. Gould, J.D., and Boies. S.J. Speech filing-An office system for prin-
cipals. IBM Sysr. J. 23, (1984), 65-81.

AcknowZedggments. For their comments on an earlier
version of this manuscript, we thank Karen Assunto,
Dick Berry, Stephen Boies, Jack Carroll, Robin Davies,
John Hughes, John Karat, Jeff Kelley, Emmett
McTeague, John Richards, Bob Taylor, and John
Thomas. Some of our ideas were developed as a result
of working on the ADS project and were influenced by
Stephen Boies. Others were developed or sharpened
while conducting a study group on human factors at
IBM in 1979. Other members of that group were Jack
Carroll, Web Howard, John Morrisey, and Phylis Reis-
ner.

21. Gould. J. D., Conti, J.. and Hovanyecz. T. Composing letters with a
simulated listening typewriter. Commun. ACM 26, 4 (1983). 295-308.

22. Hammond, N.. Jorgensen. A., MacLea A., Barnard, P.. and Long, J.
Design practice and interface usability: Evidence from interviews
with designers. In Proceedings of the CHI83 Human Factors in Compuf-
ing Systems (Boston, Mass., Dec. 1983). ACM, N.Y., 40-44.

23. Kelley. J.F. Natural language and computers: Six empirical steps for
writing an easy-to-use computer application. Ph.D. dissertation,
Johns Hopkins University, 1983. (Available from University Micro-
film International: 300 North Zeeb Rd. Ann Arbor, Mich. 48106).

24. Lewis, C.H. Using the “thinking aloud” method in cognitive inter-
face design. IBM Res. Rep. RC-9265. Yorktown Heights, N.Y., 1982.

25. Mack. R.. Lewis, C.H.. and Carroll, J. Learning to use word proces-
sors: Problems and prospects. ACM Trans. Office Inform. Sysf. I, 3

26.

27.

26.

29.

30.

31.
32.

REFERENCES 33.
NOTE: References 14.17, and 18 are unreferenced in the text.

1. Baker, F.T., and Mills, H.D. Chief programmer teams. Dafamation,
(Dec. 1973). 58-61.

2. Black, J.. and Moran, T. Learning and remembering command
names. In Proceedings of the Human Factors in Computer Systems Meet-
irtgs. (Gaithersburg, Md.), ACM, Washington, DC., 1982. 8-11.

3. Boyle, J.M., Bury, K.F.. and Evey. R.J. Two studies evaluating learn-
ing and use of QBE and SQL. Tech. Rep. HFC-39. IBM GPD Human
Factors Center, San Jose, Calif., 1981.

4. Brooks, F.P. The Myfhical Man-Month: Essays on Software Engineering.
Addison-Wesley, Reading, Mass.. 1975.

5. Bury, K.F., and Boyle. J.M. An on-line experimental comparison of
two simulated record selection languages. In Proceedings of the Hu-
man Factors Society Annual Meeting, (Seattle, Wash.), R.E. Edwards,
(Ed.), 74-78, 1982. (Available from the Human Factors Society, Box
1369, Santa Monica, Calif. 90406).

34.
35.

36.

CR Categories and Subject Descriptors: H.l.2 [Models and Princi-
ples]: Users/Slash Machine Systems-human factors; D.2.2 [Software
Engineering]: Tools and Techniques--user interfaces; D.2.9 (Software
Engineering]: Management-software qualify assurance (SQA)

General Terms: Human Factors
Additional Key Words and Phrases: systems development, principles

of design.
6. Crosby, P.B. Quality is Free. New American Library, New York, 1979.
7. Dijkstra, E.W. Structured Programming: Software Engineering Tech-

rliques, NATO Scientific Affairs Division, Brussels 39, Belgium, Apr.
1970,84-88.

Received 3/84; revised 9/84; accepted lo/84

6. Dijkstra, E.W., and Hoare. D. Structured Programming. Academic
Press, N.Y., 1973.

9. Engel. S., and Granda. R. Guidelines for man/display interfaces,
Tech. Rep. TR00.2720. IBM, Poughkeepsie Lab.. N.Y.. 1975.

10. Ericsson, K.A.. and Simon, H.A. Verbal reports as data. Psychol. Rev.
87,(1980), 215-251.

Authors’ Present Addresses: John D. Gould, IBM Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, NY 10598. Clayton
Lewis. Department of Computer Science, ECOT 7-7 Engineering Center,
Campus Box 430. Boulder, CO 80309.

11. Gomory. R.E. Technology development. Science 220, (1983). 576-580.
12. Gould, J.D. An experimental study of writing, dictating, and speak-

ing. In Affenfion and Performance VII. J. Requin, (Ed.), Erlbaum, Hills-
dale, N.J., 1978. 299-319.

13. Gould, J.D. How experts dictate. 1. Exp. Psychol.: Hum. Percept. Per-
form. 4, 4 (1978). 648-661.

Permission to copy without fee all OP part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

Gould, J. D. Experiments on composing letters: Some facts, some
myths, and some observations. In Cognitive Processes in Writing.
L. Gregg. and I. Steinberg, (Eds.) Erlbaum, Hillsdale, N.J., 1980. pp.
98-127.
Gould. J.D. Composing letters with computer-based text editors.
Hum. Fact. 23, (1981). 593-606.
Gould, J.D. Writing and speaking letters and messages. Inf. J Man
Mach. Stud. 16, (1982), 147-171.
Gould, J.D.. and Boies, S.J. How authors think about their writing,
dictating, and speaking. Hum. Facf. 20, (1978). 495-505.
Gould, J.D., and Boies. S.J. Writing, dictating, and speaking letters.
Science 202. (1976j. 1145-1147.
Gould, J.D., and Boies, S.J. Human factors challenges in creating a . I”. -. _..

_
(1983). 254-271.
Morgan. C., Williams, G.. and Lemmons, P. An interview with
Wayne Rosing, Bruce Daniels, and Larry Tesler. Byte, 1983, 90-113.
Newell. A., and Simon, H.A. Human Problem Solving. Prentice-Hall.
Englewood Cliffs, N.J., 1972.
Nix. 0. Two experiments on the comprehensibility of pause-
depleted speech. IBM Res. Rep. K-6305. Yorktown Heights, N.Y.,
1976.
Proceedings of the Human Factors in Computing Systems Meetings.
(Washington, Mar. 1981; Boston, Dec.. 1983) (Available from ACM,
Box 64145, Baltimore, Md. 21264).
Proceedings of the Human Facfors Society Meeting, (Seattle, Wash, Oct.
1982: Norfolk, Va.. Oct., 1983) (Available from the Human Factors
Society, Box 1369, Santa Monica, Calif. 90406).
Science. New Project Explores Disability Research, 233, (1984). 157.
Thomas, J.C. Office communications studies: I. Effects of communi-
cation behavior on the perception of described persons. IBM Res.
Rep. RC-7572. Yorktown Heights, N.Y., 1979.
Thomas, J.C.. and Gould, J.D. A psychological study of query-by-
example. In Proceedings of 1975 National Computer Conference. (1975),
439-445.
Williams, G. The Lisa computer system. Byte (1983), 33-50.
Yourdon. E.. and Constantine, L.L. Structured Design. Yourdon, New
York, 1976.
Zloof, M.M. Query by example-A data base language. IBM Sysf. J. 4.
(1977), 324-343.

March 1985 Volume 28 Number 3 Communications of the ACM 311

