
The art of UI prototyping - scottberkun.com http://www.scottberkun.com/essays/essay12.htm

1 of 5 1/30/2007 12:02 PM

#12 - The art of UI prototyping

By Scott Berkun, November 2000

Even the brightest people make mistakes. This is especially true for teams
of people. Somehow, as a project moves forward, small assumptions and
well-intentioned but poor decisions accumulate, turning hours of work into a
lousy user experience. The smart teams eliminate their mistakes before they
ship by using a technique called UI prototyping. Combined with usability
studies, prototypes keep teams headed in the right direction.

Why Prototype?

Prototyping is a means of exploring ideas before you invest in them. All
experienced craftspeople and engineers create prototypes of their work
before they build anything: Architects create models out of paper or
cardboard, or with virtual reality tools. Aeronautic engineers use wind
tunnels. Bridge builders create stress models. Software and Web designers
create mock-ups of how users will interact with their designs.

The best reason to prototype is to save time and resources. The value of the
prototype is that it is a facade—like a Hollywood set, where only the front of
the building is constructed. Relative to the real product, prototypes are easy
and inexpensive to create. So, for a minimal investment, you can find
usability and design problems and adjust your UI before you invest heavily
in the final design and technologies.

On examining the needs of your particular project, you might come up with
reasons for creating a prototype other than saving money. Is the goal to
explore a new interface model? Make modifications to one part of the
existing design? Investigate a new technology? It's important to be clear
about why you're building what you're building before you start. If you begin
with clear goals, you can be direct and effective in your efforts. The reasons
for creating prototypes fall into three basic categories:

Proof of concept. Among some teams there are disagreements
about the future direction of a project. You can use a prototype to
prove that an idea or new approach has merit or value. A prototype
can help illustrate that an idea works, express its qualities in a
visual and interactive way, and/or motivate team members to think
about the problem from another perspective.

1.

Design exploration. If you design interactive things, the only way
to explore how something will be used is to create a mock-up and
interact with it. Sometimes the mock-up is tied to a usability study,
where parts of the prototype can be evaluated in a structured way.
Sometimes it's just a way to clearly express to a developer how
something should work or look. In many cases, a designer might
simply be experimenting, in an effort to get a sense for what
approach might work. Anyone on the team can use prototypes to
explore design issues, although designers are generally the most
skilled. Design explorations should be directed at trying to solve
specific problems that you've recognized in your product.

2.

Technical exploration. Developers investigating implementation
approaches to a problem often try out different coding techniques
to see if they work well. Using HTML, Jscript, SQL, DHTML, Win32,
or specific coding approaches within each technology have different
tradeoffs. Sometimes a prototype represents an exploration into
what technology will work well to support a certain UI or web
feature.

3.

Sometimes prototypes are created for a combination of these reasons. If a
team plans well enough, they can allot time for a developer and a designer
or project manager to work together on a prototype. In such cases, it's

The art of UI prototyping - scottberkun.com http://www.scottberkun.com/essays/essay12.htm

2 of 5 1/30/2007 12:02 PM

extremely important to clearly define the goals and the contributions each
team member is expected to make. You want everyone to be clear on what
the goals are, what's at stake, and what the potential outcome will be.

Who Is Involved?

Prototyping can be done informally by anyone, regardless of their
background or role in the project. It's easy to make a simple but effective
prototype by taking a bitmap from Adobe Photoshop, putting it into the
Microsoft® FrontPage® Web site creation and management tool, and
adding active buttons or links. These lightweight prototypes only go so far,
and can become unwieldy for complex interactions.

For more formal prototypes by larger teams, a developer or project
manager will often collaborate with a designer and a usability engineer.
Together they'll generate ideas, build a prototype that represents the best
ideas, and then go into the lab to see how effective it is in solving user
problems. Developers might get involved if they can spare the time, or if
their technical expertise is needed. Often the designer or project manager
will do most of the scripting or coding to build the prototype.

When Do You Build a Prototype?

Depending on the scope of the prototype and the level of detail required,
prototypes can be built at any time during the project. Most often they are
created early in the project, during the planning and specification phase,
before developers write any production code. That's when the need for
exploration is greatest, and when the time investment needed is most
viable. If developers instead of program managers or designers are
prototyping, scheduling time becomes even more important because you
need to make sure the work invested in the prototype is accounted for in
the development schedule. Planning for any UI release should include some
level of prototyping.

Late in a project, smaller prototypes can help resolve tough design and
technical issues. A quick HTML mock-up of how a dialog box or Web page
should behave can help answer a developer's question or give other
teammates a feel for what the desired experience should be. In some cases,
a strong program manager or designer can implement the behavior in
Microsoft JScript® development software and approximate much of the
programming logic that developers will need to think through.

The time it takes to create a prototype can vary tremendously, depending
on the scope and precision of what the end result needs to look like. An
informal prototype could mean a few hours of work by one person; a more
organized effort can involve weeks of effort by an entire team.

How Far Should You Go?

In your prototype, build only as much of the design as you need. It's okay
to have buttons that don't work, or text that never updates. As long as you
can experience the interactions you want to explore, it's fine to use smoke
and mirrors for the rest. Here are a few reasons why you should focus your
efforts carefully:

Cost of building the prototype. You want to minimize the cost
involved in building the prototype. The challenge with prototyping
is recognizing the minimal investment needed to effectively
answer your questions about the design. This is where usability
studies are critical, because they clearly identify the parts of your
UI that need the most work. Even without usability studies, you
should clearly define what user problems you're trying to solve,
or what tasks you're trying to improve, with the design in your
prototype.

Limited lifetime. Prototypes should have clearly defined
lifetimes. Is the end goal a presentation at a team meeting? An

The art of UI prototyping - scottberkun.com http://www.scottberkun.com/essays/essay12.htm

3 of 5 1/30/2007 12:02 PM

executive review meeting? A spec review? A usability study?
Convincing yourself, with your devil's advocate hat on, that the
design solves a user problem? Once the needs for these specific
objectives are met, the prototype should be set aside. The basic
mindset is that the code or bitmaps generated in a prototype will
be left behind. There might be exceptions where code or visuals
live on in the product, but the expectation should be that this
won't be the case.

Risk of overwhelming the team. Showing prototypes to
developers and teammates can be tricky. An overly complex or
elaborate prototype, sporting amazing visuals and animation, can
overwhelm people. You should always have a sense for how far to
go and how much of what you're creating in the prototype you
want to be taken seriously.

Determining the Scope of Your Prototype

As you determine where to focus your prototyping efforts, here are some
things to consider:

Customer needs. If you start with an understanding of the key
problems or needs of your users (perhaps something your
usability engineer has provided for you), then you have an idea
about which parts warrant the most exploration.

Usability study tasks. If you are creating the prototype for a
usability study, discuss with the usability engineer what specific
tasks will be part of the study, and design around those
elements.

Team input. Talk with key developers on your team as the ideas
in your prototype are coming together. Get a basic sense from
them on what's reasonable, what's possible, and what is beyond
consideration for the next release. In some cases, you might
deliberately go beyond what they say is possible for one aspect of
the design if it's a key point and you think the team needs to be
challenged. However, you don't want to do this with every aspect
of your prototype. There is a fine line between pushing the limits
and overwhelming your team. If you only want to inspire the
team by showing them a vision for several versions out, then go
for it. However, if you're looking to define specific changes for the
next release, then focus your efforts on those changes. Make sure
you call out the specific changes in a modular way to show
developers a path for building your designs.

Breadth vs. depth. For larger prototypes, there is the additional
consideration of breadth versus depth. Do you make each feature
in the design work just a little bit, or do you pick one feature and
prototype almost all of its pieces and options? If you're not
careful, you'll try to do both at the same time and end up with a
large, unwieldy prototype that is hard to modify and difficult to
throw away.

Wireframe vs. Visual design - Depending on your audience,
consider what level of visual design quality you need your
prototype to have. Sketches or box drawings may suffice for folks
you work with often, that you do not need to impress, or who can
understand the difference between the prototype, and what it
represents. If you are presenting to less experienced clients,
certain executives, or more technical audiences, a more robust
and aesthetically invested prototype might be appropriate. An
additional consideration is what questions you have for the design
itself - if you hope to learn about the impact of your aesthetic and
layout choices on usability, and you are planning for a usability
test, you need to make that additional investment.

ROI: Return on Investment - Prototypes allow for various
forms of evaluation (aesthetic, business, technical, usability). The

The art of UI prototyping - scottberkun.com http://www.scottberkun.com/essays/essay12.htm

4 of 5 1/30/2007 12:02 PM

higher fidelity the prototype is, the greater accuracy your
evaluation will have. The most robust prototypes require no
explanation - you just point people at it, and let them experience
it for themselves. The more you have to explain ("oh, that
wouldn't do that in the real version", "the style will be more
techno") the less robust it is, and the less accurate the
evaluations are likely to be. Of course, you pay a price for the
investments you make. Deciding how robust is enough, and how
accurate an evaluation you need to make is a judgement call,
much like the decision making processes of actual web sites or
software products. Your goal is to invest as much as necessary to
obtain the information and effects you want, but no more.

Making Prototypes Flexible

One way to focus your prototyping resources is to concentrate on smart
design. You can create more effective prototypes by allowing one piece of
prototype code to exercise many different ideas. Instead of having five
different prototypes, consider making one prototype that has the options to
switch the different attributes of the prototype.

Should the toolbar be located on the left or on the top? Should we show 10
items on the home page or 20? A good prototype has some sort of built-in
options panel that allows you to change the parameters of how the
prototype looks or works. Keep these option panels hidden in your
prototype—you don't want a usability participant accidentally finding them
during a test.

The challenge is to keep the prototype simple, but still useful enough that
you can show it to a teammate, walk through some of the different options
you're thinking about, and get feedback on them.

How Do Beta Releases Differ from Prototypes?

Beta releases don't qualify as prototypes, because they are complete
engineering efforts. If you find a critical mistake in a feature of a beta
release, you are unlikely to throw it away, even if that might be in the best
interest of the product. The developers, testers, and designers have already
invested their time, and the pressure to live with bad decisions is very high.
Betas certainly do help in finding bugs and defects, but they are rarely
useful in making controlled studies of the value of specific design directions.

Tools and Technologies

There are several different tools and technologies you can use for creating
prototypes, each of which has its advantages and disadvantages. Consider
the type of design work you're trying to prototype and the goals of your
prototyping effort as you decide which tool or technology is right for you.

Paper - For usability studies or quick reviews, paper is often the
fastest way to prototype a design idea. Using Photoshop,
mspaint, or any tool you are comfortable with, produce screens
that express the design, and print them out on paper. If you
make enough screens, you can simulate walkthroughs, allowing
test users to make choices and experience the design. However,
for prototypes of moderate complexity, generating paper
prototypes can be cumbersome. Highly interactive things like
games or chat rooms can not be simulated well on paper. Also,
the more elaborate the tasks, the more pages you might need to
have handy.

Microsoft Visual Basic—. This is the fastest technology for
creating Windows-style UI prototypes. The Web browser object
makes it easy to integrate HTML UI with your standard
Windows-style components. While it's true that an experienced
C/C++ developer might be able to generate UI faster in C/C++,
this creates the temptation to reuse code from the UI prototype

The art of UI prototyping - scottberkun.com http://www.scottberkun.com/essays/essay12.htm

5 of 5 1/30/2007 12:02 PM

in your production code. It takes discipline to recognize that the
goals of a quick and dirty UI prototype are highly divergent from
high-quality engineering. Make sure you know what kind of code
you're writing, and that your team or manager understands what
will be discarded.

Macromedia Director or Flash. This is one of the most popular
UI prototyping tools among designers. It is most useful for
multimedia or non-standard GUI designs, or for prototypes that
require significant animation. It's high flexibility makes it
cumbersome for Windows-style UI compared to Visual Basic.
However, a proficient Director user can generate Windows or Web
UI without difficultly.

HTML. Dreamweaver, FrontPage and other HTML editors allow
for fast creation of simple prototypes. To express an idea, you
can often create bitmaps that illustrate a sequence of user
interaction, and place them into FrontPage. Then you can create
link areas to connect the pages, and simulate how you can
interact with the design. JScript and DHTML take things to
another level, allowing for very sophisticated logic and
interaction. If you are using HTML to prototype your Web site, the
warning just described for C/C++ applies here as well—don't fall
into the trap of confusing quick prototype code with
production-quality engineering.

Scott's first book, the art of project management, will be published by
O'Reilly in April of 2005.

All content copyright 2005. Scott Berkun. RSS Feed

